TRP チャネルの構造と多様な機能

大、香 沼 西 大 輔,高 太。瓜 生 幸 加 藤 瞖 嗣。山本 余 子 雄。眞 本 達 生、森 牛

transient receptor potential(TRP)チャネルは、1989 年ショウジョウバエの trp 遺伝子が同定されて以来、世界中で精力的に研究され、莫大な機能的多様性を有するイオンチャネルファミリーを成すことが示された。その中でも特に TRP チャネルの大きな生理的役割として、"センサー"としての機能と"足場"としての機能が浮かび上がってきた。TRP チャネルは、直接的に、もしくは受容体を介して間接的に種々の生理活性物質により活性化される"センサー"タンパク質として働く。また、様々なタンパク質と相互作用することで、自身のイオン流入を細胞内シグナルとして効率的に伝えるシグナル複合体形成の"足場"としても働く。本総説では、このように多様な機能を持つ TRP チャネルについて最新の知見を述べる。

1. はじめに

transient receptor potential (TRP) チャネルは,20年前にショウジョウバエ TRP 遺伝子が同定されて以来,世界中で精力的な研究がなされ,莫大な機能的多様性を有するイオンチャネルファミリーを成していることが明らかになってきた。その中でも特に TRP チャネルの大きな生理的役割として,"センサー"と"足場"の機能が浮かび上がってきた(図1). TRP チャネルは,直接的に,もしくは受容体からのシグナルを介して間接的に,種々の生理活性物質により活性化されることで,細胞における"センサー"タンパク質として働く。また、TRP チャネルは様々なタンパク質と相互作用することが明らかになり,現在ではシグナル伝達素子としてのみならず,自身のイオン流入を細胞内シグナルとして効率的に下流に伝えるシグナル複合体

京都大学工学研究科 合成・生物化学専攻 分子生物化学分野 (〒615-8510 京都府京都市西京区京都大学桂) Structures and variable functions of TRP channels

Tomohiro Numata, Daisuke Kozai, Nobuaki Takahashi, Kenta Kato, Yoshitsugu Uriu, Shinichiro Yamamoto, Takeshi Kaneko, Tatsuo Shinmoto, and Yasuo Mori (Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615–8510, Japan)

形成の"足場"としても働くと考えられている。本総説では、このように多様な機能を持つTRPチャネルについて最新の知見を述べる。

2. TRPの単離と同定

trp 遺伝子は1989年ショウジョウバエの光受容応答変異株の原因遺伝子として発見された¹¹. trp 変異株においては光受容器電位変化が一過性(transient)であることが命名の基になっている. trp をコードするタンパク質(TRP)は、カチオンチャネルを形成している. 遺伝子解析の結果、図1に見られるように多くのTRPホモログが同定されており、TRPチャネルスーパーファミリーは、哺乳類においては少なくとも29種類の遺伝子から構成され、六つのサブファミリーを構成している^{2.3}.

TRP classic(canonical)(TRPC)ファミリーは、ショウジョウバエ TRP と相同性が高いファミリーであり、チャネルの活性化は Ca^{2+} 貯蔵部位(ストア)枯渇やホスホリパーゼ C(PLC)の活性化と密接に関連している $^{4-7}$. 直接作用する活性化因子としては、カルシウムイオン(Ca^{2+})やジアシルグリセロール(DG)が考えられている. TRP melastatin(TRPM)は、メラノーマ(悪性黒色腫)細胞の腫瘍の悪性度に反比例して発現量が減少する melastatin-1 (TRPM1)をはじめとして見出されたファミリーである 8 .

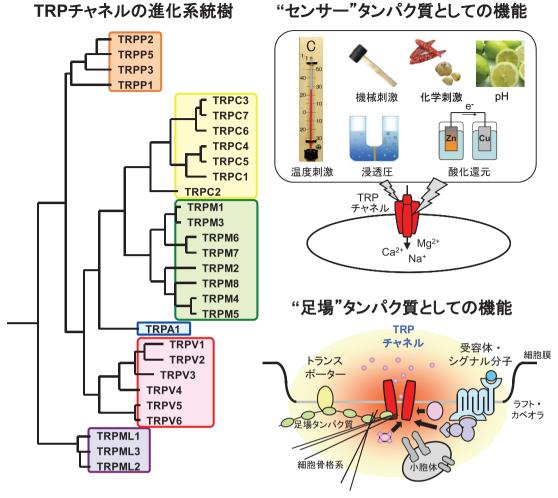


図1 哺乳類のTRPチャネルの進化系統樹と機能

TRPM ファミリーは細胞の代謝、分化、増殖、細胞死の調 節に重要な役割を果たしていると考えられており、酸化ス トレス,細胞内 Ca²⁺濃度上昇,温度変化,pH の変化,機 械刺激,浸透圧の変化等で活性化する. TRP vanilloid receptor (TRPV) ファミリーは唐辛子の辛み成分であるカ プサイシンによって活性化する vanilloid receptor (TRPV1) をはじめとして見出されたファミリーである. TRPV ファ ミリーは、一酸化窒素 (NO) などの化学物質、温度上昇、 pH の変化、機械刺激、浸透圧の変化などの物理・化学的 な刺激で活性化される^{3,9,10)}. TRP mucolipin (TRPML) は, 4 型ムコリピドーシスの原因遺伝子である TRPML1 をはじ めとするファミリーである11~13). 細胞質内のリソソームの 輸送やアポトーシス細胞のクリアランスに関わっており, ニコチン酸アデニンジヌクレオチドリン酸(NAADP)、細 胞内 Ca²⁺濃度上昇, 酸等で活性化する. TRP polycystin (TRPP) は, 常染色体優性遺伝嚢胞腎 (autosomal dominant polycystic kidney disease:ADPKD)の原因遺伝子の一つと して単離された PKD ファミリーである¹⁴⁾. TRPP1 と P2, TRPP2と V4, PKD1L3と TRPP3を共発現すると形質膜上

で活性が見られ、繊毛での機械感受や舌での酸感受に関わっており、電位変化、細胞内 Ca^{2+} 濃度、浸透圧、機械刺激、pH の変化で活性化される $^{15\sim18)}$. TRP アンキリン(TRPA) は、N 末端に多くのアンキリンリピート (ANKR) 構造を持ち、シグナル伝達、成長の制御に関わる遺伝子p120 として報告された 19 . 哺乳類においては、現在のところ TRPA1 の 1 種類だけが同定されており、pH 変化、温度変化、酸化ストレス、浸透圧、機械刺激等で活性化する.このように TRP は、多くの遺伝子ホモログを有すると

このようにTRPは、多くの遺伝子ホモロクを有するという点のみならず、活性化機構が多岐にわたっているという点においても、他のイオンチャネルファミリーの中では極めてユニークな存在となっている。

2-1 構造的な特徴

TRP の基本構造は、いくつかの TRPP を除き、いずれも 6 回膜貫通領域を有する(図 2). N 末端、C 末端は細胞内 に面しており²⁰、それぞれの末端部位には特徴的な構造が 存在する。第 1 膜貫通領域の前の N 末端細胞質内領域には TRPC、V、A においては ANKR を有し、TRPM におい

964 〔生化学 第 81 巻 第 11 号

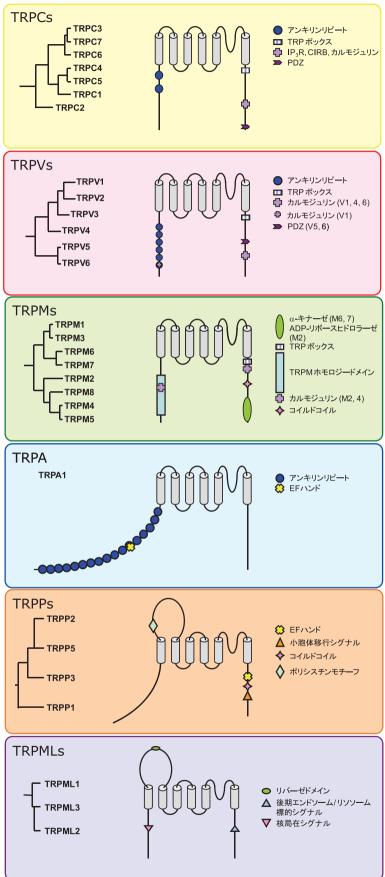


図2 TRPチャネルの分類と構造

2009年 11月] 965

ては TRPM ホモロジー領域を有する. 第6 膜貫通領域のすぐ後の C 末端細胞質内領域には "EWKFAR" という,いわゆる TRP-ボックスを含む 25 アミノ酸残基からなる TRP ドメインが存在する. この TRP ドメインや TRP-ボックスに似た配列は, TRPC, M, V サブファミリーに見られるが他のサブファミリーには見られない. TRPC, M と V の一部には, TRP ドメイン C 末端直後に TRP-ボックス 2 と呼ばれるプロリンリッチ配列が存在する. また, C 末端部位には, TRPP, TRPML の小胞体 (ER) 膜移行シグナル, TRPM2, M6 や M7 の酵素活性部位などの特徴的なドメインが見つけられている^{2,21)}.

一般的に知られている6回膜貫通領域を持つチャネル は、二つの"ドメイン"を持っている。一つは S4 電位セ ンサーを含む S1-S4 領域. もう一つは第 5. 第 6 膜貫通領 域の間にポア領域を含む S5-S6 領域である. TRP は、電 位依存性 K⁺チャネルと同じく6回膜貫通型のチャネルで あるが、必ずしも全ての TRP ホモログに電位依存性が見 られるわけではない.電位依存性チャネルである K_v/Na_v/ Ca、においては、膜電位変化によって S1-S4 領域が動くこ とにより、チャネルポアが開口する. TRPの中で膜電圧 変化によって活性化するチャネルは、TRPV1、M4、M5、 M8及びA1が知られている²²⁾. ほとんどのTRPはK_v/ Na_v/Ca_v チャネルに見られるような、S4 に特徴的な正電荷 を持ったアミノ酸残基を欠いているが、TRPM8チャネル には S4 領域付近に電位依存性チャネルに見られるような 正電荷を持つアミノ酸残基が配置されており、このアミノ 酸残基へ変異を導入すると電位依存性に変化が見られるこ とから、K_v/Na_v/Ca_vに見られるような電位依存性機構が示 唆されている²³⁾. TRPV1, V3 及び A1 などは, S4 に対応 すると考えられる領域に正電荷を持ったアミノ酸残基が配 置されていないにも関わらず電位依存性を示す. S4 領域 以外の電位感受性領域が想定されるが、現在のところ同定 に至っていない. TRP チャネルのゲートは、電位による 影響よりもむしろ温度、化学物質の結合に伴う構造変化に 影響を受けることから、弱い電位依存性を持ち、細胞質側 のリガンドによってチャネルの開口を促すcyclic nucleotide-gated (CNG) channel が機能的な類似体として 挙げられるかもしれない.

TRP チャネルにおける高解像度の構造解析は未だ達成されてはいないが、ポア領域は2回膜貫通型のイオンチャネル構造を持つバクテリア K⁺チャネル (KcsA) と同様に、6回膜貫通型サブユニットタンパク質がホモあるいはヘテロ四量体を形成していると考えられている^{14,24)}. 最近、TRP チャネルの単粒子構造解析が行われ、その結果、TRPV1 はバスケット状、C3 や M2 はベル状の構造を持っており、4 回対称の四量体であることが明らかになった^{25~27)}. 特に TRPC3 は、分子量から推察されるよりもか

さ高く、密度の低い構造が見られることから、複数のシグナルタンパク質を集積するシグナル複合体の中心分子として働くために、広い表面積を有するのではないかと考えられている。

2-2 機能的な特徴

TRPホモログは、多様な機能を示すチャネルである. 近年の研究により、TRPは、細胞内外の様々かつ複合的な刺激によって活性化する "センサー" としての機能に留まらず、細胞膜付近に様々なタンパク質やシグナルを集積する "足場" タンパク質としての機能も併せ持つことが明らかになってきた.

2-3 センサーとしての機能

先にも触れたように、TRP チャネルの活性化機構は多 岐にわたっており、温度、機械刺激、浸透圧、痛み、フェ ロモン,酸・塩基,酸化ストレスや刺激性化学物質など, 様々な刺激で活性化される. そのため細胞内外の環境変化 を感知し、細胞内シグナルに変換する、いわゆる"セン サー"であるとして考えられている』。また、細胞内外の リガンドを感知するだけでなく、受容体からのシグナルを 感知して活性化される. 受容体活性化チャネル (receptor activated Ca²⁺ channel: RACC) はGタンパク質共役型, チロシンキナーゼ型受容体などの活性化から、ホスファチ ジルイノーシトール代謝回転を介して活性化するカチオン チャネルを形成しており、その分子実体は長く不明のまま であった. RACC の中には、ER の Ca²⁺枯渇によって活性 化される,ストア作動型 Ca²⁺チャネル (store-operated Ca²⁺ channel: SOC または Ca²⁺ release-activated Ca²⁺ channel: CRAC) も含まれる. TRPC3 は ATP 受容体やムスカリン 受容体刺激から DG を介して活性化される RACC であ る^{28,29)}. CRAC に関しては, TRPC1 欠損免疫 B 細胞株や ノックアウトマウスにおいて CRAC 活性が減弱したとい う実験結果から、TRPC1が分子実体であると考えられて きた^{30,31)}. しかし、最近、Feske らにより、ある種の SCID (severe combined immune deficiency) 患者の T 細胞から, 1 塩基多型アレイを用いたゲノム全体の網羅的調査とショウ ジョウバエの RNA 干渉スクリーニングによって新規タン パク質 Orai1 が CRAC の有力な候補として発見された³²⁾. Orail は、4回膜貫通領域を持ち、四量体でポアを形成し ていることが、アミノ酸残基への点変異を用いた解析等か ら分かってきた^{33~35,37)}. しかし, Orail 単独発現では CRAC の亢進がみられないため、ER 内の Ca²⁺枯渇を原形質膜の Orail に伝える STIM1 (stromal interaction molecule) を含 めた他の分子との複合体が CRAC の分子実体であると考 えるべきであろう36).

多くの TRP チャネルは温度感受性を持っており、低温

で活性化する TRPM8 や A1, 平温で活性化する TRPV3, V4, M2, M4 及び M5, 高温で活性化する TRPV1 及び V2 というように、活性化温度領域により大きく三つに分類さ れている38. 活性の上昇は、温度変化がチャネルを開かせ るのではなく、電位依存性や活性化剤に対する感受性が上 昇することによるものと考えられている³⁹. 機械刺激で活 性化する TRP チャネルは、直接的な活性化と間接的な活 性化を含めてTRPC1^{40,41)}, C6⁴²⁾, V2⁴³⁾, V4^{44,45)}, M4⁴⁶⁾, M7^{47~49)}, A1⁵⁰⁾及びTRPP1とP2¹⁶⁾に関して報告がある.痛 みに関する TRP チャネルは TRPV1, V2, V3, V4, M8, そして A1 が報告されており、ATP、プロスタグランジン (PG)E。などの炎症関連メディエーターで活性化され る^{38,39)}. またこれらの痛みに関係する TRP は、浸透圧及び 機械刺激でも活性化されることから、侵害性機械受容に関 わっている可能性もある51).フェロモンを感知していると 考えられている TRPC2 は、ヒトにおいては偽遺伝子であ るが、マウスを含む齧歯類ではチャネルとして機能してお り、TRPC2欠損マウスではフェロモンを感知しないため に性特有の行動に異常が現れる52.酸・塩基を感知する TRP チャネルは、酸で活性が抑制される TRPV5⁵³⁾や M5⁵⁴⁾、 酸で活性化される TRPV1^{55,56)}, M6⁵⁷⁾, M7^{57,58)}, C5⁵⁹⁾, PKD1L3 と TRPP3¹⁷⁾, ML2⁶⁰⁾, ML3⁶⁰⁾, そして A1⁶¹⁾が報告されてい る. また TRPML1⁶²⁾及び M7⁶³⁾は、H⁺も透過すると考えら れている.一方,アルカリで活性化する TRP は,TRPA1⁶⁴⁾ や P3⁶⁵⁾の報告がある. TRPM2⁶⁶⁾, M7⁶⁷⁾, C5⁶⁸⁾, V1⁶⁹⁾及び A1⁶¹は体内におけるシグナル伝達やエイジングに関与する と考えられる活性酸素種、活性窒素種によって活性化され る. TRP チャネルは種々の天然物によっても活性化され、 V1 は唐辛子 (カプサイシン)^{70,71)}, M8 はハッカ油 (メン トール)⁷²⁾, A1 はワサビ成分の allyl isothiocyanate (AITC)⁷³⁾, ニンニク成分のアリシンでによって活性化される.

2-4 "足場" タンパク質としての機能

TRP は単なる Ca^{2+} 流入経路の一つとして機能するだけでなく,他の酵素分子と機能的結合することで TRP チャネルを中心としたシグナル複合体を形成している.ショウジョウバエ TRP は,inactivation no after potential D (INAD)という "足場" タンパク質と結合し,シグナル複合体の一部を担うことが古くから知られていたで。 近年,哺乳類においても,TRP チャネルのシグナル複合体形成に関わる相互作用が数多く報告されている.PLC,ホスホイノシトール 3 キナーゼ(PI3K)といった酵素から,homer,カベオリン-1,snapin などの"足場" タンパク質, Na^+/H^+ exchanger regulating factor (NHERF),カルモジュリン(CaM)などのモジュレーターやイノシトール 1, 4, 5-トリスリン酸 (IP_3) 受容体,リアノジン受容体,sarco/endoplasmic reticulum Ca^{2+} -ATPase (SERCA) などの ER タンパク質にい

たるまで、多岐にわたる分子がTRPチャネルを中心として集積し、多様なシグナル複合体を形成している⁷⁶.

3. TRP チャネル

3-1 TRPC (表 1)

1) 構造的な特徴

ショウジョウバエのTRPと最も相同性が高いTRPCファミリーは、TRPC1-C7が見出されている.TRPCは配列の相同性や機能的類似性から、TRPC1/4/5、TRPC2、TRPC3/6/7の三つのサブファミリーに分類される.

TRPC の N 末端には ANKR, コイルドコイル (CC) 領 域、中央には6回膜貫通領域、C末端にはTRPドメイン が存在し, 四量体でチャネルを形成すると考えられてい る、電子顕微鏡による単粒子構造解析により、TRPC3の 三次元構造が TRP ファミリーの中で初めて明らかにさ れ物, その後, クライオ電子顕微鏡を用いた解析により 15 Åの解像度でより微細な構造が解かれている²⁶⁾. TRPC3 は 電位依存性 Na⁺チャネルや IP₃ 受容体と共通の基本構造を 有しており、小さな細胞外ドメイン、タンパク質密度の高 い膜貫通ドメイン、そして広がった細胞質ドメインからな るベル形構造をしている26. 細部構造に注目すると, TRPC3の細胞質構造は入れ子式で、ワイヤーフレーム状 の外殻は多数の活性調節タンパク質の感知, 球形の内部屋 がイオン流入を調節することが可能な構造を持っている. そのため、他のチャネルとは異なる生理多機能性を有して いると考えられている.

2) 機能的な特徴

哺乳類の TRPC ファミリーは、Ca²⁺透過型非選択性カチ オンチャネルである. 受容体刺激, ストア枯渇, 及び他の タンパク質との相互作用による活性化が報告されている. そのため、直接的な刺激の"センサー"という機能が注目 されている他の TRP ファミリーとは異なり, むしろ "足 場"タンパク質の機能を有するシグナル制御チャネル複合 体として注目されている. TRPC ファミリーの様々な受容 体刺激による活性化は、調節因子の違いはあるが、PLC の活性化を介することを共通の性質にしている. 一方, い くつかの TRPC ファミリーは受容体刺激を介さない細胞内 Ca²⁺ストア枯渇や TRPC と ER の IP₃ 受容体の間の構造上 直接的なカップリングにより活性化される可能性を示唆す る報告がある⁷⁸⁾. そのため、TRPC ファミリーは、ストア 作動型チャネルの分子実体であると提案されたが、ストア 枯渇に非依存性という報告もあり、ストア依存性に関する 統一的な見解は成されていない.

TRPC チャネルは、INAD や PDZ ドメインを含む集積タンパク質の結合を介し、CaM、PLC、G タンパク質、PKC などのシグナル分子を集めることで Ca^{2+} シグナリング複

表1 TRPC ファミリー

サブファミリー	TRPC1	TRPC2	TRPG3	TRPC4	TRPC5	TRPC8	TRPC7
- 1	TRP1	mTRP2	TRP3	TRP4, CCE2	TRP5, CCE1	TRP6	TRP7
		偽遺伝子	NP_001124170 NP_001124170.1 NP_003296.1	30.1	NP_036603.1	NP_004612.2	NP_065122.1
	NP_446010 NP_035773	NP072160 NP_035774 NP_001103367	NP_068539.1 NP_062363.2	NP 001076584 1 NP 536321.1 NP 058680.1	NP_543174.1 NP_033454.1	NP 446011.1 NP 038866.2	XP_225159.4 NP_036165.1
C末端の役割	C-TRPbox N-3×アンキリンリピート(ヘテロ化 (TRDC3))	C-TRPbox N-3×アンキリンリピート	C−TRPbox N-2×アンキリンリピート	C-TRPbox N-2×アンキリンリピート	C-TRPbox N-2×アンキリンリピート	C-TRPbox N-3×アンキリンリピート	C-TRPbox N-3×アンキリンリピート
		C-CIRB PDK1と-2と配列上相同性	C-CIRB C-PDZ binding	O-CIRB O-PDZ binding N-コイルドコイル	O-CIRB C-PDZ binding (VTTRL)	O-CIRB	C-CIRB
他のテャネルとの機能的、物理的 相互作用	TRPC1, TRPC3, TRPC4, TRPC5, TRPC7, TRPC (1+3+7), TRPC/(1+3+7), TRPC/(1+3	TRPC2、TRPC6、IP3R(2型、3型)	TRPC1, TRPC3, TRPC6, TRPC7, IP3Rs, RyRs, VDAC1-3, NCX1, SERCA1, SERCA2, Na+-dependent Glu/Asp transporters 1 and 2	TRPC1, TRPC4, TRPC5, TRPC6, TRPC (1+3+4), TRPP2, CFTR, TRP (1+3+1), TRPP	TRPC1、TRPC4、TRPC(1+3+5)	TRPC2, TRPC3, TRPC6, TRPC7	TRPC1, TRPC3, TRPC6, TRPC7, TRPC(1+3+7)
(報道)ハウス(の第七年十、大キャル条件)	1KPC(1+3+3)、1KPZ、1KPZ、IP3K 4量体構造(AFM解析) 内向主教法律	4-1111	4量体膜貫通構造(クライオ電子顕微鏡 単粒子解析) 内向き数流性		ハイドロバツー解析 の事数法(も向き,以内の主教法)	4量休權造 9雷救滞任(内向李-从向李教涤)	ハイドロバシー解析の手数等を手数を指して主教を表しています。
イオン設造性	非選択的(Na ⁺ 、Cs ⁺ 、Ca ²⁺ 、Ba ²⁺)	非選択的(Na ⁺ 、Cs ⁺ 、Ca ²⁺)	非選供的(Na˙, Cs˙, Ca²˙)	非選択的(Na ⁺ , Cs ⁺ , Ca ²⁺ , Ba ²⁺)	(新)	非選択的(Na*, Cs*, K*, Rb*, Li*,	非選択的(Na ⁺ 、Cs ⁺ 、Ca ²⁺ 、Ba ²⁺)
シングルチャネルコンダクタンス		42pS			38-66pS	Ca , Ba , Sr , Mn) 28-38pS	75pS
	Apple 学ュリン、wovelin-1、 7 cavealin-2、STM1、Src. MAA、 F horner1、horner3、MAD、FKBPE2、 ji FLOR、GF-PLC 、GF-PLC 、GF-PLC 、 GF-PLC 、 GF-PLC 、 GF-PLC 、 GF-PLC 、 SNARES、FRAA、GF-PLC 、 SNARES、FRAA、GF-PR 、 SNARES、FRAA、GF-PR、 FRAA、GF-PR、 FRAA、GF-PR FRAA、GF-PR FRAA、GF-PR FRAA、GF-PR FRAA、GF-PR FRAA、GF-PR FRAA、GF-PR FRAA FR	TITM: Sar, MAA, homen! PluC 71. Enkurin. junctase, erythropoletin receptor	Isocitrate deliydrogenase [IA/D] submit hera, mitochondrial my excursor, PEEP'2. J.J. v. seweller. S. S. S. P. C. Y. i. PLC-Y. 2. (40,) 62, et al. 2. P. C. Y. i. PLC-Y. 2. (40,) 62, et al. 2. P. C. Y. i. PLC-Y. 2. (40,) 62, et al. 2. PLC-Y. 1. PLC-Y. 2. (40,) 62, et al. 2. PLC-Y. 2. Syndatic Package of the properties of all 2. PLC-Y. 2. Syndatic Package of the properties of all 2. PLC-Y. 2. Syndatic Package of the properties of all 2. PLC-Y. 2. Syndatic Package of the properties of all 2. PLC-Y. 2. PLC-Y. 2. PLC-Y. 2. PLC-Y. 3. PL	Caveolin-1, STIM1, Src, MAA, NHERF	homen, WHERF, IMAD, FROBS2, Soc. MAA, Phomen, WHERF, IMAD, FROBS2, Mickerson, MICK	7JJP¥>⊒J>, Src. MxA, FKBPI2, Fyn	カルモジュリン、Src、MAA、FKBP12
活性化条件	PLC、ストア枯渇、タブンガルジン、 F IP3、カルバコール、PKC、PKA、ム スカリン受容体、低浸透圧、機械刺激(膜仲展)	PLC、ストア枯溢	P.C. メトナ枯込、ダブンカラジン、F3、メタコン、アンキ4中ソンンロ、 Sro	ストア枯渇、タブシガルジン、IP3、ヒ スタミン	PLC、ストア枯渇、ATP、ヒスタミン、 PIP5K、Rac、PI3K、MLCK	ATP、カルバコール、ヒスタミン、メタンリン、バソブレシ、フッ化アルミニウム、CaMKII、PIP3、20-HETE	PLC、ストア枯渇、ATP、カルバコール、メタコリン、anti-igM
	OAG, {Delta}9- tetrahydrocannabinol, Ca²+	OAG, SAG, DOG, DAG	OAG, DOG, ionomycin	GTP γ S, La³⁺	GTP γ S. La 3 *, NO, SNAP, 5- nitro-2-PDS, H $_2$ O $_2$	GTP 7 S, OAG, SAG, DAG, DOG, SLG, RHC80267 (DAG-lipase inhibitor), flufenamate	GTPァS、OAG、DOG、DAG、 RHC80267 (DAG-lipase inhibitor)、 トリプシン
不活性化条件						Ca ²⁺	Ca²⁺
	2APB、Gd³⁺	2APB, U73122	Gd³'. ビラゾールJ. SKF96365, BTP2	La³·、ニフルミン酸、DIDS、A−18、 ACC-018	2APB, La³*, SKF96365, BTP2	2APB. Cd²·, La³·, Gd³·, U73122, SKF96356, アミロライド	2APB, La³*, SKF96356, U73122, W−13
シグナルとの 関わ り E	ROS-Src-TRPC1/caveolin-3 pathway contributes to the athogenesis	フェロモンングナル伝達		OREBドメインを介した活性		CaM inhibitors (calmidazolium, trifluoperazine), c=Jun/STAT=3, VEGF, Src(PTKs)	
	脳、心臓、肺、肝臓、脾臓、腎臓、軟 骨、膵臓、筋肉、子宮、精巣、精子、 前立腺、幹細胞、血小板、巨核珠、 上皮細胞、中枢神経、後根神経節	(牌職、腎職、胸腺、子宮、後根神経節、皮膚、骨格	脳、心臓、膵臓、腎臓、胎盤、嗅球、 骨、子宮、精巣、前立腺、門脈、平 滑筋、後根神経節	脳、心臓、肝臓、腎臓、子宮、精巣 嗅球、筋肉、後根神経節	、题、心臟、肺、脾臟、腎臟、筋肉、、腦、胃、膵臟、胎盤、卵巢、骨、削立、解、精、上、平治筋、門脈、平治、甲治、胃、、中、症、肠、血小板、後根神経節	脳、心臓、肺、腎臓、腸、小腸、目、後根神経節、平滑筋、前立腺、軟骨
モデルマウス 変異マウス 示唆される生習的機能	所形に小・ ・ 中央化の相信用・手術機能の ・ 中格化の相信用・手術機能の に対するの。第入総略・構造制に おけるるのの解析分子、神経体相 おけるるのの解析分子、神経体相 数数型化でお析え、血管が下して) 数数型化でお析え、血管中落所 が入りる側面構成。 のの形成、加高にものの即向によ おけるも開鍵のプルチン上機能に おけるも開鍵のプルチン上機能に おけるも開鍵のプルチン上機能に おけるも開鍵のプルチン上機能に おけるも開鍵のプルキントを上機能に おけるも開鍵のプルキン上機能に は、表表円機のプロロード	TRP02-/- TRP02-/- SOC マウス様子様形の SOC マウス様子様を応い性別 SOC マウス様子様をのため ED	1893年生産収施、IRPC3と招補的な会策。SOCサブュニットの一 IPP-1874年と、「大学会の大学会」では、第人発統、血管における血液とブランキニップによる血管拡張に関与、では、1874年を では、アンプスを存在しる。第人、表表を関の方向付け、血管における機能により入る性、シナブ大伝管や建物の方向付け、血管における機能に入り入ませ、シナブ大伝管や建物神能に必要、血管上皮における細胞接着、細胞の運命を決定付ける		神経25-ゲー 神経交起の伸長、胃におけるムス カリン受容体活性化型チャネル	所R064~ ・ (2.3 大路の、中が防におけるの で3.3 大路の、中が防におけるの 等体が体に型する。 や浸透圧射液による原体服の登録。 上昇、血管疾病の道式、中原筋部 筋の攻縮	TROD-7- 免疫応答
城縣	端息、新生内膜過形成異常、拡張型心的流症、于12.7岁型的/21 型心的流、于12.7岁型的/21 ロンイー、パーキンソン病への保護 効果、特発性肺動脈高血圧、慢性 低酸素性血管収縮、糖尿病腎症	性認識障害、行動異常	特発性誹勸脈在游馬曲圧症、心肥大、衛血圧	血管弛緩の異常、DHPG誘導性て んかん様疾患	連鎖性精神遅滞	心肥大 腎臟疾患、変異が家族性集状分節状糸球体硬化症の原因	心筋における細胞死の抑制

表2 TRPM ファミリー

+77 7 ≅!)—	TRPM1	TRPM2	TRPM3	TRPM4	RPM5	TRPM6		TRPM8
	MLSN(melastatin), L I KP C I	5	MLSNZ, LIRPG3	LINPG4, MLSZs, GANI4bJ, Melastatin-like 2, Long TRPG4, Ca ^{2*} -activated non-selective cation channel 1	Mfr1, L1 KPC5	CHAKZ	OHAKI, IKP-PLIK, LIKPO,, MagNum, MIC	Irp-p8, GMKI
AccessionNo	NP_002411.3		NP 001007472 NP 066003 NP 996827 NP 996828 NP 07347 NP 996830 NP 996839 NP 001007471 NP 996831					NP_076985
79k 70X	NP_001032822.1 NP_001032823.1 NP_001011559 NP_001034193.2 NP_061222.3 NP_612174		NP_796315 NP_001030322 NP_001030319 NP_001030317	NP_001129701	XP_344960.3 NP_064673 h	XP_700466	XP_001056331.1 NP_067425	NP_599198 NP_599013
	N-700 a.a. TRPM domain、 C-TRP box C-コイルドコイル	N-700 a.a. TRPM domain、 C-TRP box C-コイルドコイル C-カルモジュリン結合領域 C- 酵素活性部位	A domain,	N-700 a.a. TRPM domain、 C-TRP box C-コイルドコイル C-カルモゾュリン結合領域	C-TRP box C-コイルドコイル	N-700 a.a. TRPM domain、 C-TRP box C-コイルドコイル C-野素活性部位 C-静素活性部位	N-700 a.a. TRPM domain、 C-TRP box C-J-J.U.F.J-J.U.(多量体形成) C-酵素活性部位	N-700 a.a. TRPM domain、 C-TRP box (PIP ₂ 活性) C-コイルドコイル N-局在化と多量体化に必要 C-コイルドコイル(競移行、多量体 形成)
他のチャネルとの機能的、物理的 相互作用		110011				TRPM7	TRPM6	
烟		単粒子解析					C-酵素活性部位、C-コイルドコイル ル	
Nの粉(2値カチオンを含む条件) イオン路過性	? 非選択的?	リニア 非選択的(Na゙、K゙、Cs゙、Ca²゚)	外向专整流性 非選択的(Na*, K*, Ca ^{2*})	強い外向き繋流性 価力チオン選択的(Na*, K*, ・ ・ Co*, Li*)	強い外向き繋流体 	遊い外向き整流性 非選択的(Na*, K, Cs*, Li*, Ca**, Mg*, Ba*, Sr*, Zn*, Ni*, C Cd**, Mn*)	強い外向き整流性 非選択的(Na、K、Cs、Li、H、 Ca ² 、Mg ² 、Ba ² 、Sr ² 、Zn ² 、N ² 、 Cd ² 、Co ² 、Mn ²)	強い外向き <u>整流性</u> 非選択的(Na*、K*、Cs*、Ca ^{2*} 、 Ba ^{2*})
ンングルチャネルコンダクタンスが下れません。	۵.	52-76pS	65-83pS	21–25pS	16-25pS	10-87pS	23-40pS	35-83pS
お内で多本	膜移行?	繼 、		がたてエップ、SOK! 脱分極、温度、PIP2、膜伸展、PKC FIによるリン酸化、Decavanadate	脱分極、温度、PIP ₂	SRK1/2の活性 ERK1/2の活性 Erk1/2ormanitation Erk1/2ormanitation Erk1/2ormanitation Erk1/2ormanitation Erk1/2ormanitation Erk1/2ormanitation Erk1/2or	Snapin, myosin in heavy chain 脱分極、低浸透压による細胞膨 張、機械刺激、PKA、PLC、PIP ₂ 、 Mg nucleotide	脱分極、低温、Rhoキナーゼ活性、PIP ₂ 、不飽和脂肪酸
招性化潮		ADPR、cADPR、NAD、NAADP、 H ₂ O ₂ 、NO、Ca ^{2*} 、アラキドン酸	D-erythro-sphingosine, dihydro- D-erythrosphingosine, NN- dimethyl-D-erythrosphingosi	decavanadate, Ca²², ATP, PIK, :	□ 事 v 、 Oa**		2APB、H ₅₀₂ 、酸、アルカリ、cAMP	トメンソール、クロドリマゾール、 icin・アンルカリ、Hescolathi. MAG、cooling agent、PMD38、 coodant P. geranid, Inalod. Eucalyptol、hydroxycitronellal, GPS-113、389、WS-3、11、12、14、23、30、148
不活化条件		АМР		Ca ²⁺	スペルミン、酸、Ca²*	receptor for activated C-kinase 1 の活性がTRPM6の活性を抑制する		PKGの活体
聚柳田	÷e"	2APB、PARP図書剤(SB750139- 1 BPJ34 DPQ)、ACA、N-(p- amylcinnamoylarthranilic acid、ク Dトリマゾール、エコナゾール、フ ルフェナミン酸	M3E3(抗休)、Gd³·、Mg²·	La*、Gd*・フルフェナミン酸、スペ 目ルミン、ゲリベングラミド、DIDS、adenosine、ADP、AMP、ATP、9-Phenanthrol、MPB-104	煮、フルフェナミン酸、スペルミン	ルテニウムレッド、Mg"、Ca"	La"、Gd"、Mg"、プトレシン、スペルミジン、スペルミン、キオマイシン、ポリリジン、ルテニウムレッド、2APB、Ca"	、AMTB、BCTC、酸、SKF96365、 tio-BCTC、カブサゼビン、2APB、 エタノール、AOA、アナンダミン、 NADA、phenanthroline
ングナルとの関わり		ADPR、PARP、PTP、Src、カルモ ジュリン、sirtuin、Pyk2~IL-8 産生						ERのCa²'放出に関与
急援部位	腦、肺、目、皮膚	腦、心臓、肺、膵臓、脾臓、白血球、単球(Jurkat、EOL1、U937)、 骨髓、神経	脳、肺、膵臓、腎臓、子宮、精巣、骨盤、神経	脳、心臓、肺、肝臓、膵臓、脾臓、 腎臓、骨格筋、平滑筋、胎盤、子 宮、前立腺、精巣、大腸、小腸、胸 腺、血球、膀胱	脳 膵臓・小腸、膀胱・前立腺、精巣、小腸、胃、舌、嗅覚組織	脳、肺、腎臓、平滑筋、大腸、小腸、 精巣、神経	ユビキタス(脳、心臓、肺、肝臓、 腎臓、脾臓、骨、脂肪、骨格筋、神 経など)	肺、肝臓、前立腺、精巣、舌、血管、末梢神経、後根神経節、三叉神経
		TRPM2-/-	$\overline{}$	_			TRPM7-/-	
示義なわる年祖的意識	的服务都的问题,属の体色、搬额 的双海灌溉的价单企则服、政 游布の惠性度とTRPM1発现量が 进拍圆	ないというな後	新の 都的でイナントロアックステロ・イド 単等体として他く		味噌 (甘み、苦味、ウ末み)	題におけるMe ² ・面発性の維持	議成と制定的人であっている分 構成と個的政策、アネキン・1の19 2017、海鉄市地震的大は一直し 中央経過的光線的容別。 1回中級 最初的政策。 1回中級 最初的政策。 1回中級 最初的政策。 1回中級 最初的政策。 1回日本的政	サイナインの活性の上来。 サイナインの活性の上来。 サイナインの活性の影響を、関いた サイナを影響が上ができるができます。 ローナーをかして下のWishを、神像 における不可避性の脂肪炎と 高熱道要症を抑患する。
城縣	及南絶、メラノーマ	構成器的の過程が、対極性とつ 体 参信の機能、AIS、バーキン ン、アレンン・イー・単基系細胞 (1937, RIN3F) ネクローシス件圏 胞形		不整脈、心器拍動異常、発作性脱 分極	Beckwith-Widemann、味覚障害	2次的6/版Mg*加益、低Co*加益、 Mg*吸收障害、2型糖尿病、低 Mg*血によう	成血性神秘部別死、緊結化、者形別 成果性、接触節変化級、平治筋に おける細胞別が、個球性の異常、 アント島における療養能に、(一 オンソン様、別難原能、他別。 したう、場化器面の細胞液を誘導、 虚由再灌消除は水中2%経路を介 したうだ性による細胞死を誘導、 虚由再灌消除は水中2%経路を介	自动政事企物企業性度上结假。有 情報的企業。 一個性等於不到工。 一百年的2年之。 一百年以第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十

表 3 TRPV ファミリー

į			来 3 IKPV ノアミリー			
もの呼ばれ	VR1, vanilloid / capsaicin receptor	VRL-1, OTRPC2, GRC	VRL3	2, VRL-2, OTRPC4, VR-	ECaC, ECaC1, CaT2, OTRPC3	ECaC2, CaT1, CaT-L
cessionNo				OAC		
	NP_061197.4 NP_542435.2 NP_542436.2 NP_542437.2		NP_659505.1	NP_067638.3、NP_671737.1	NP_062815.2	NP_061116.2
ラット		NP_058903.2	NP_001020928.1	NP_076460.1	NP_001007573.1	NP_446138.1
事会の無什么		1	֡֝֟֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟ ֓֞֞֞֞֞֞֓֞֞֞֓֓֞֞֩֞֞֩֞֞֞֩֓֞֞֞֩֞֞֡֓֡֓֡֡	NP 0/1300.1	בי	NP_0/1858.2
		4	O-TRPbox	N-0 × V V + V V V C - T V C - T R Pbox C - CaM C - CaM	N-0 × V V + V V V C C - I V C - T V C	NTO X V V + V V V V C C T T C C T T P Box C - P D Z
テャネルとの機能的、物理的 作用		TRPV1	TRPV1 TRPV1(否定的)	aquaporin5 RyR、BkCa IP3R	TRPV6	TRPV5
製	アンキリンリピートの結晶構造、クライオ電子顕微鏡による単粒子解析	アンキリンリピートの結晶構造				アンキリンリピートの結晶構造
т	外向き整流性	弱い外向き整流性	外向き整流性	弱い外向き整流性	内向き整流性	内向き整流性
	、K [*] 、Cs [*] 、Ca ^{2*} 、 げることだイオン 脳過	, Cs⁺, Ca²⁺,	*, K*, Cs*, Ca²*)	非選択的(Na*, K*, Cs*, Ca²*, Mg²*, Rb*, Ba²*, Li*)	非選択的(Ca ^{2*} 、Mn ^{2*} 、Ba ^{2*} 、Li [*] 、 K [*] 、Ca [*])Ca ^{2*} 透過性高い	非選択的(Ca ^{2*} 、Ba ^{2*} 、Sr ^{2*} 、Mn ^{2*、} Na、Li、Os、K [*])Ca ^{2*} 透過性高い
シングルチャネルコンダクタンス	35.4-76.7pS	ن	172pS	54-105pS	77.5pS	42-58pS
				カルモジュリン、MAP7、PAGSINs	II、NHERF2、 KG3、calbindin PRY	S100A10、annexin II、カルモジュ リン、Rab11a、PDZK2、NHERF4
#	>43°C、脱分極、PIP ₂ 、PKC、PKA、 CCL3、トリプシン、NGF、PI3K、 MAPK、ERK、ATP	52°C(mouse,ratのみ)、PI3K、細 泡膨張、IGF-1、neuropeptidehead ctivator (HA)		27-34°C、細胞膨張、PAR2、 PKG、SFK	定常活性化、PIP ₂	定常活性化、CRAC(?)
	・キシ 2APB、 S)- X/-	APB(mouse.ratのみ)、テトラヒド iカンナビノール	アラキドン酸、メントール、シンナ ムアルデヒド、オレガン、cloves、 thymes、2APB、カンフル、NO	低浸透圧 (5.6 EETを介する)、アナングミド、5.6 -EET、4 α-PDD、NO、PMA、bisandrographolide、 2APB	klotho	2APB
不活性化条件	PIP ₂ 、カルモジュリン、ATP				Ca²*、Mg²*、酸	Ca²¹, Mg²⁺, PLC, PIP₂
	ルテニウムレッド、BCTC、カプサゼピン、[125]_resiniferatoxin	ルテニウムレッド、La³+、Gd³+、 SKF96365、TRIM	ルテニウムレッド、ジフェニルテトラ ヒドロフラン	ルテニウムレッド、La³+、Gd³+		ルテニウムレッド、Cd²+
シグナルとの関わり			, , , , , , , , , , , , , , , , , , ,			the state of the state of
	後根神経節、三叉神経節、節状神経節、脳、神、胃、腫、腫、腸、腎腫、腫腫、腫腫、腫、腎質、腎腫、腫、腫、腫、腎質、固、IRP/2と局在)	《根神経節、三叉神経節、脳、 5、腸、脾臓、肥満細胞	ES .	三叉神経節,脳、蝸牛,心臓、肺、腎臓、脾臓、膵臓、精巣、前立腺、胎盤、脂肪	3、腎臟、膵臓、削立腺、精巣、胎	脳、肺、腸、胃、肝臓、腎臓、脾臓、膵臓、胎盤、子宮、皮膚
አረ	TRPV1-/-	3告なし こ		TRPV4-/-	RPV5-/-	TRPV6-/-
	温度感知、外因性発痛物質に対 對子 公長書受容器、炎症性疼痛、体 第二の調節、不安、恐怖等の感情、血圧調節、食欲調節、排尿調節	:症性疼痛、肥満細胞における脱 粒、ヒスタミン放出	温度感知(moderate warmの感知)	温度感知(moderate warmの懸 智和、炎症性疼痛、圧の感知、浸 透压、機械刺激による痛覚過敏、 聽覚、海馬神経細胞における顕著 の調節、全身性高浸透圧に対す る防御機能:飲料する量を調節	職における ca²・の再吸収、加 トと供に発現量が減少する	腸における Ca ^{2・} の再吸収、加齢と 供に発現量が減少する
K K	脳卒中による神経変性、統合失調 「市における痛覚の場所に対策上記 にのapsaicin投与した動物と症状と 類似、粒子状物質吸入に伴う呼吸よ 療患、神経因性排尿病過活動。自 施における痛み、遠痛性大調炎に おける痛み、遠痛性大調炎に おける痛み、薄傷性人調炎に おける痛み、薄傷性人調炎に おける痛み、球形炎に対する防御 痛れ、外降暗痛、緊緊炎における 痛み、外性問節炎に対する防御 痛み、外性関節炎に対する防御 痛み、小砂臓虚目に対する防御	筋症、左心室拡張、収縮活動の 「Y、間質性機構成(dystrophin- coprotein複合構成のdisruption[こ り生じる筋細胞の変性)	皮膚炎に関連した脱毛に関与	聯島時における気管支過剰反応、 連発型標準障害 第一の能弱性、常染色体優性非 症候性難聴への関与 症候性難聴への関与	常染色体優性突発的高カルシウム原への関与が示唆 ム原への関与が示唆	

表4 TRPA, TRPP, TRPML ファミリー

サブファミリー	TRPA1	TRPP1	TRPP2	TRPP3	RPP5	TRPML1	TRPML2	TRPML3
信の呼ばか	ANKTM1, p120	PC1, PKD1	APKD2, PC2, PKD2, PKD4	PCL, PKDL, PKD2L1, PKD2L	PCL2, PKD2L2	MCOLN1, Mucolipin1	MCOLN2, Mucolipin2	MCOLN3, Mucolipin3
AccessionNo	NP 015628.2	NP 000287.3 NP 001009944.2	NP 000288.1				NP 694991.2	NP 060768.8
京	NP 997491.1	N.D.		NP 001099822.1	NP 001099626.1	NP 001099373.1	NP 001034094.1	NP 001012059.1
マウス	NP 808449.1	NP 038658.2	32887.3				NP 080932.2 NP 001005846.1	NP 598921.1
N末端 C末端の役割	N-17×アンキリンリピート N-EFハンド		O-EF/シド O-コイルドコイル		0-コイルドコイル	C-リソソームターゲティングシグ TM-リパーゼセリンモチーフ N-# 巨エルシが + II		
他のチャネルとの機能的、物理的		TRPP2	TRPC1, TRPP1, TRPV4, IP3R	PKD1L3, TRPP1		IN 校園在モレノング TRPML3(ヘテロ多量体)	TRPML3(ヘテロ多量体化)	TRPML1, TRPML2
和具作用 構造								
IVの形(2価カテオンを含む条件)	外向き整流性	なし	ほぼリニア	外向き整流性(?)	خ.	П	内向き整流性(?)	内向き整流性(?)
イギン協議存	非選択的(Ca ^{2*} 、Na [*] 、Cs [*])、活性 化すると誘過性が変化		非選択的(Ca²+、Na˙、K˙)	非選択的(Na゙,K゙,Cs゙,Ca²゙, Mo²* Sr²* Ra²*)		非選択的(Na゙,K゙,Ca²゙,Mg²゙, Sr²+ Ba²+)	非選択的(Fe ²⁺)、no current?	非選択的(Na ⁺ 、K ⁺ 、Ca ²⁺ 、Mg ²⁺)
シングルチャネルコンダクタンス	87-163pS		24-157pS	137-199ps	25pS	32.5-145pS	N.D.	49-70pS (A419P)
相互作用するタンパク			トロポミオシン1、トロポニン1、α アクチン、Hax1、mDia1、Id2	トロボニン1		AP1		
活性化条件	ブラジキニン、ポリン酸、<17°C、 ドリプシン、カルバコール		機械刺激(灌流)、過分極、低浸透圧(PKD1と共発現)	過分極、脱分極、細胞膨張、アルカリ、強酸処置後(PKD113との共発現)				
活在化剂	キャンドロカンナビノート、マス サイナイル、アリンン、シナイ アル・デビ・ 痛痰ガス、(・メントー パープ・カース・イン(***) (ログ・アリング) HE (4 ー muse) 細胞 カアリンガリ、HE (4 ー muse) 細胞 mydroxynomanal) オルマリン、故 垂塩素酸、サルクリン、以 BE 58 ー muse 154 ー m		Ca ² 、體簡A 7. 125.1	Ga.、クエン酸、塩化水 米		酸、Ca²、NAADP	選	概
水浴粒心像件	Ca2+					類		
联	AP18, HC-030031, CMPI(human のみ), (ー)メントール、カフェイン (humanのみ), カンフル、ルテニウ ムレッド、Gd³*、ゲンタマイジン		Cd**、La**、ニフルミン酸、アミロライド、酸、2APB	Gd³*、La³*、フルフェナミン酸、 Mg²、酸		アミロライド、ca ^{2*、} Mg ^{2*} 、 PPADS、ニフェジピン、ペラパミル		ペラバミル(A419P)、 Gd³-(A419P,WT)、酸
シグナルとの関わり								
兜现都位	後根神経節、三叉神経節、節状神経節、脳、内耳、舌、心臓、肺、陽、膵臓、平滑筋		腎臓、心臓、血管平滑筋	脳、心臓、目、舌、肺、肝臓、膵 臓、膵患(pancreatic islets) 副腎、 脾臓、腎臓、骨格筋、精巣、胎 盤、後根神経節、腸、大動脈	窗、肝臓、腎臓、精巣	ユビキタス(脳、肺、胸腺、肝臓、 腸、骨格筋、白血珠)	B細胞	脳、肺、胸腺、肝臓、脾臓、腎臓、大腸、精巣、内耳有毛細胞
モデルマウス、変異マウス	TRPA1-/-			krd mice (P2-/- with other deletions in pax)				
示唆される生理的機能	外因性発痛物質に対する侵害受容器、炎症性疼痛、神経因性疼 痛 痛		細胞周期	國味學物		エンドンームの異常、エキンサイトーンス、Ba脂のにおけるリンソームの輸送に重要、アポトーンス部的のファイが一般のグリアシー路のグリアランス	Art6体存的経路によりGPI -APの 局在を制御、B細胞におけるリソ ソームの輸送に重要	有毛細胞トランスデューサーイオンチャネルのひとう
(전 제	oigarette somoke 「よる神器性效症		多緒性業間腎、心臓疾患、ハブロイ全、薬師形成 心臓疾患、ハブロイ・薬師形成 (異辺数と4000年1461。病気の変 異辺襲への発現制能・糖色の巻 不同したる結婚破壊・眼性疾 島はんコレビン1の子ャルコンダ クサンス減少に起因、ムコリピン フェンスに重要、ムコリピンリン・レームに砂 ドーンスに重要、ムコリピー・シス 株役でシピアなムコリピー・シス 接受・シピアなムコリピー・シス 機能・消化器、規管障害 大イス)、ABCの影響にデリールに必 が発症・リソンムとの整備差が 関係、神経、消化器、規管障害 W44に上りた300円が高等の W44に上り468がMLNの病害の W44に上り468がMLNの病害の レルジ条の輸送のカード・ジスを観がゴ		

合体として機能することが報告されている^{79,80)}. ノムノフィリンである FKBPI2 は TRPC3, C6, C7 と相互作用する一方で、FKBP52 は TRPC1, C4, C5 と相互作用する⁸¹⁾. またこれら以外にも、TRPCファミリーは、様々なタンパク質と結合するのみならず、TRPCファミリー内においてもヘテロマルチマーを形成するという特徴を有する. TRPC1 は C4, C5 とヘテロマーを形成し, TRPC4/5, TRPC3/6/7 もそれぞれヘテロマーを形成しうる⁸²⁾. ヘテロマーはホモテトラマーとは異なるチャネル活性を示す⁸³⁾. このように TRPC のシグナル複合体は、そのタンパク質の組み合わせによって細胞内局在、シグナル制御特性などを調節している⁸⁰⁾.

TRPC1 は,脳,心臓,肝臓,精巣,子宮,唾液腺,平滑筋,上皮など広範に発現しており,上皮組織の透過性や平滑筋,骨格筋の収縮,細胞周期,分化,細胞死への抵抗,傷の回復,アクソンガイダンスの発達制御,細胞容積調節に関わっている40.41.84~860. また,methyl-β-cyclodextranやTRPC1 に対する抗体の処置が thapsigargin(TG)やトロンビンによる Ca²+誘導性ホスファチジルセリンの形質膜の外層への移動を阻害したことや受容体活性化及びストア作動性 Ca²+流入によりリン脂質の非対称性が見られたこと970から形質膜の状態を制御している可能性がある.

TRPC1 は、当初、ストア作動性 Ca2+流入を担うチャネ ルとしてクローニングされ⁹²⁾, その活性化機構は STIM1 のC末端との相互作用⁹⁴⁾やRhoA, IP₃ 受容体, Orail など との相互作用によるとの報告があるが,一致した理解は得 られていない^{95,96)}. しかし, TRPC1 は, netrin-1, 脳由来神 経栄養因子 (BDNF) などの受容体を介した PLC 活性を介 して活性化されることや85,86),直接的な膜伸展や低浸透圧 刺激による細胞容積増大によって活性化されること40,41)が 報告されている。形質膜付近では、TRPC4 などのヘテロ マー形成86)及びカベオラに局在するカベオリン-191)や細胞 骨格に関与するβチューブリン(微小管形成)⁸⁸, RhoA (細 胞骨格の再構成)®及びシグナル関連分子のPLC, Gootil, homer, IP3 受容体, CaM などタンパク質の相互作用に よってシグナル複合体形成87,90,91)がされていることにより TRPC1 の活性のみならず、下流シグナル伝達の効率化を 制御している.

TRPC2 はヒトでは偽遺伝子であるが、マウスではチャネル機能を有する。TRPC2 は発現系において、他のTRPCとヘテロマルチマーを作らないことが報告されているが⁹⁸⁰、内在的に発現するTRPC2 は、C6 とヘテロマルチマーを組み⁹⁹⁰、他のチャネルやシグナル分子である3型IP₃ 受容体、STIM1 及びPLCγと相互作用をすることによりシグナル分子を形成している^{94,100)}。TRPC2 は、精巣、鋤鼻器官などに発現しており、精子が卵表面に存在する ZP3と呼ばれる糖タンパク質と結合した際に生じる持続的な

 Ca^{2+} 流入を担っている 101 . また鋤鼻器官において,TRPC2 は DG で活性化され,フェロモンの探索に重要だとされている 102 . TRPC2 欠損マウスでは性別の区別ができず,雄同士の闘争行動がなくなることから,TRPC2 はフェロモン感知を制御するチャネルであると考えられている.TRPC2 が SOC に関わるという報告もある 103,104 が,未だ確立されていない.

TRPC3 は脳、腎臓、膀胱、骨格筋、平滑筋、心筋に発 現している. TRPC3 は、受容体活性化型のチャネルであ り、ストア枯渇、DG などにより活性化され、その活性維 持には Src キナーゼを介したチロシンリン酸化が必要とさ れている^{105~108)}. 一方, TRPC3の活性はPKCを介した PKG によるリン酸化により抑制される109,110). このように TRPC3は、複数のシグナル分子により制御されている他 に形質膜での発現が多い時は常時活性化型であり, ストア 枯渇とは独立に活性化しているが、発現が少ない時は、ス トア作動型であるように TRPC3 自身の形質膜の発現量に よる活性制御が知られている^{112~116)}. また TRPC3 は他のタ ンパク質と複合体を形成することで新たな機能を発揮する ことも知られており、例えば ER チャネルの IP。受容体、 リアノジン受容体、ER 輸送タンパク質の MxA、シグナル 分子の CaM, Gαq11, PLCβ, PLCγ, 骨格系分子のカベオ リン-1 などとシグナル分子複合体の形成¹¹⁷⁾, Na⁺/Ca²⁺ exchanger (NCX1) など他の膜輸送タンパクとの複合体形成¹²⁵⁾ などの報告がある。中でも TRPC3 の形質膜移行に関わる PLC を介した活性制御については詳細に調べられており、 PLC による様々な役割が示されている。その役割として PLCγ1 は形質膜への維持に必要であること¹¹⁹⁾, PLCγ2 は受 容体刺激やストア枯渇によって引き起こされる細胞外から の Ca²⁺流入で酵素活性を引き起こし、PIP₂(ホスファチジ ルイノシトール 4,5-ビスリン酸) の加水分解によって産 生された IP3と DG によって持続的な Ca2+応答に関与する ことが示されている²⁹⁾. TRPC3 を中心としたシグナル複合 体は生体内においても重要な役割を果たしている. TRPC3 遺伝子のノックダウン及びノックインマウスの解析の結 果, PLC の下流において TRPC チャネルを介する Ca2+流 入がカルシニューリンの活性化及び nuclear factor of activated T cells (NFAT) の核移行を惹起することにより心肥 大を引き起こすことが明らかになった^{119~124)}. また TRPC3 は、BDNF 受容体 TrkB シグナルに直接に関わっていると されており¹¹¹, 小脳顆粒神経において TRPC3 は、BDNF により活性化され神経伸展に重要な役割を担っていると報 告されている. TRPC3 欠損マウスを用いた解析からプル キンエ細胞において, mGlu (metabotropic glutamate) 受容 体依存的なシナプスのシグナル伝達に TRPC3 が必要とさ れ,歩行などの運動の協調性を制御することが示された1231.

TRPC4 は,内皮,平滑筋,脳における神経膝状核,腎

臓、副腎に発現が見られ、TRPC5とアミノ酸配列上 73% 相同性があり、ストア作動型チャネルであると言われていた 21,125 . TRPC4 はシグナル分子である PLC β やチロシンキナーゼ、集積タンパク質である NHERF 126)、またカベオリン-1と相互作用し 127)、形質膜付近で TRPC4の C 末端に存在する VTTRL 配列を介して PDZドメインを有する NHERF やエズリンと相互作用をする。これらの相互作用は、成長因子受容体シグナルや TRPC4 の膜移行と活性を制御している 126). TRPC4 欠損マウスを用いた実験では、大動脈内皮細胞におけるアセチルコリン受容体活性化による $^{2+1}$ 流入の減弱、血管平滑筋の弛緩反応の異常が報告されている 126).

TRPC5は、血管内皮、脳などで発現が認められている が TRPC4 と同様に PLC を介して活性化され¹²⁹⁾, La³⁺, Gd²⁺でも活性化される¹³⁰⁾. 細胞外の高濃度の Ca²⁺により TRPC5 の活性は維持され、TRPC1 とヘテロマーを形成す る. TRPC5 は、他の TRPC ファミリーと同様に受容体刺 激によっても活性されることが知られているが, 近年, NO によっても活性化し、その活性化機構が詳細に調べら れた. TRPC5 に存在するシステインへのアミノ酸点変異 を用いた NO 修飾部位の探索の結果、チャネルのポア領域 に存在する Cvs553 の S-ニトロシル化を介したポアの構造 変化がチャネルの活性化に重要であることが分かった. こ のシステイン残基はアミノ酸配列上 TRPC1, C4 あるいは TRPV1, V3, V4 においても同じポア領域に保存されてお り、同様のシステイン修飾によってチャネルが活性化する ことを示唆している⁶⁸. さらに TRPC5 は血管内皮細胞に おいて、受容体刺激時で産出された NO により活性化し て、細胞内に持続的な Ca²⁺流入を引き起こすことが示唆 された⁶⁸⁾. また、TRPC4 と同様に C 末端に VTTRL 配列や CaM 結合領域を持っており、"足場" タンパク質である NHERF やシグナル分子である PLCβ, EBP50, CaM, PKC, シナプトタグミン, リン酸化タンパク質 stathmin2, 細胞骨格関連タンパク質のミオシン軽鎖、膜融合関連の SNARE, ダイナミンファミリーの MxA などを集積するプ ラットホームとして機能する. 形質膜付近における細胞骨 格,シグナル分子,ERから形成されるシグナル複合体 は、TRPC5の局在やチャネル活性を制御している.TRPC5 は脳に多く発現しており、神経の生存や分化における TRPC5 を介した Ca²⁺流入が、神経成長、成長円錐の長さ や形態の決定に重要であることが示されている131,132). また 上皮成長因子の刺激によって形質膜へ小胞輸送されること から、TRPC5の活性は細胞形態変化を開始させるメカニ ズムに関与すると考えられている133).

TRPC6 は、肺、脳そして平滑筋細胞に発現しており、 細胞骨格関連タンパク質のアクチニン、アクチン、drebrin、輸送タンパク質の MxA と相互作用することでシグ

ナル複合体を形成し106,135~137), 他の TRPC ファミリーと同 様にムスカリン受容体などの受容体刺激による PLC の活 性化を介して活性化される. Src 型チロシンキナーゼ Fvn は TRPC6 の活性を維持し、TRPC6 に直接作用していると されている138). またラット脳動脈において、血管内圧力の 上昇によって引き起こされる血管収縮に TRPC6 が関わる ことが報告された. TRPC6 をアンチセンス DNA や siRNA 処置によりノックダウンすることで血管収縮が抑制された ことから機械刺激による血管収縮にも大きく関わることが 示されている¹³⁹⁾. さらに、組換え発現系において TRPC6 が膜伸展による機械刺激で活性化するということも報告さ れている¹³⁷⁾. これらを裏付けるように TRPC6 欠損マウス は血圧上昇,大動脈輪の収縮性の亢進を示した139. さら に、アレルゲン投与による気道アレルギー応答の減弱が見 られた¹⁴⁰⁾. TRPC6 を心臓特異的に過剰発現するトランス ジェニックマウスを用いた実験では、TRPC3と同様に圧 負荷による心肥大が亢進しており、ヒトの拡張型心筋症で TRPC6 発現の上昇が見られた¹¹⁰⁾.

TRPC7 は、心臓、肺、眼で発現が多く見られており、ストア作動性、非作動性の両方で活性化されると報告されている。TRPC7 は、受容体を介した PLC の活性を介して活性化され、シグナル分子 PCL、CaM、輸送タンパク質MxA などとシグナル複合体を形成している 142,143 . これらの活性は細胞死に関与しており、白血球や心臓においては、PGE₂ あるいは、アンギオテンシン II 誘導性アポトーシスに関わっている 144,145 .

3-2 TRPM (表 2)

1) 構造的な特徴

TRPM ファミリーは、N端に約700アミノ酸のTRPM ファミリーホモロジー領域とCCドメイン、C末端に TRP-ボックス, CC ドメインを持っている. TRPM ファミ リーホモロジー領域の役割は現在のところ不明であるが, C末端における CC ドメインについては、サブユニットの 集積やチャネルの局在に関わることが知られている146~148). TRPM ファミリーの中でも M2, M6 及び M7 は, C 末端 の細胞質内領域に酵素モチーフを持つ. 例えば TRPM2 は、C末端にDNA修復酵素MutTのピロホスファターゼ として機能する Nudix モチーフを有する^{66,149)}. 当初, 細胞 内における ADP リボース (ADPR) や NAD⁺が TRPM2 の Nudix モチーフに作用してチャネル活性が引き起こされる ことが明らかにされ^{66,149)}, その後, サイクリック ADPR (cADPR) が NAD⁺-ADPR-cADPR というような変換を介 し、その活性を制御していることが分かってきた150). TRPM6 や M7 の C 末端には一種の α -キナーゼモチーフが 存在する. 当初, TRPM7 において, この酵素領域は ATP 量を感知してチャネル活性を制御すると報告があった

が $^{151)}$, 現在では、一種の α -キナーゼモチーフにおける酵素活性はチャネル活性には関与せず、むしろ細胞増殖に関与するということが考えられている $^{152,153)}$. また、TRPMファミリー全般のC 末端に存在する TRPドメイン及びTRP-ボックスは、チャネル活性を PIP_2 との相互作用を介して制御しているということが、TRPM8 及び M5 の TRPドメイン及びTRP-ボックス内の正電荷を持つアミノ酸残基を中性アミノ酸残基へ変異させることで示された $^{154)}$. その後、TRPM4 における研究から TRPドメイン及びTRPボックスの役割は TRPファミリーに共通のものではないということが示されるなど $^{155)}$ 、一致した見解は得られていない。

近年までTRPMファミリーの構造に関する報告は数少なく、TRPM7のC末端一部分にある α キナーゼドメイン¹⁵⁶及び、CC領域の一部の結晶構造が知られているのみであったが¹⁴⁶、最近、負染色画像を用いた構造解析の結果からTRPM2の全体的な構造が得られた。TRPM2はベル状の構造を取っており、膜貫通領域にポア様の空洞を持ち、細胞質側にNudixモチーフと思われる突起が見られた²⁷⁷。これらの結果から、チャネルのC末端に酵素活性部位を持つTRPM6やM7も同様の構造を取ることが予想される。今後、酵素活性部位を持たないTRPMに関しても、構造解析の研究が期待される。

2) 機能的な特徴

TRPM ファミリーは、それぞれの発現部位、機能共に非常にユニークであり、腫瘍の悪性度に関連する発現 (TRPM1, M8)、脂質成分 (TRPM3)、細胞内 Ca²⁺濃度上昇 (TRPM4, M5)、温度刺激 (TRPM2, M4, M5, M8) などによる活性化、C 末端の酵素活性部位に関連する代謝 (TRPM2, M6, M7) など様々な形で機能を果たしている.

TRPM1 は、メラノーマ細胞における腫瘍の悪性度に反比例してその発現が減少することから発見された⁸. 現在のところきちんとした機能評価はできていないが、目や皮膚に発現が見られることから、網膜 ON 型双極細胞の応答や馬の体色¹⁵⁷、皮膚がん⁸、がん転移の抑制⁸⁾と関わりがあることが示唆されている⁸⁾.

TRPM2 は脳、膵臓、血球などに発現しており、過酸化水素などを介した酸化ストレス⁶⁶⁾や DNA の修復過程に産生される NAD⁺、cADPR、及び 35 度以上の温度¹⁵⁸⁾で活性化される¹⁴⁹⁾. その活性化機構から神経細胞死¹⁵⁹⁾やインシュリン分泌¹⁵⁸⁾に関わっている。特にマクロファージにおける炎症性ケモカイン産生についての生理的意義が詳細に調べられている。デキストラン硫酸ナトリウム誘導性の潰瘍性大腸炎を惹起したモデルマウスにおいて、炎症部位で産生された活性酸素種が、マクロファージにおける TRPM2 の活性化を促すことにより CXCL2 産生の増加を引き起こし

た. さらに産生された CXCL2 は炎症部位へ好中球の遊走を惹起し、集積した好中球により潰瘍の形成など病態の悪化を引き起こすことが示された. これらにより、TRPM2はケモカイン産生を介して炎症を悪化させる重要な分子として機能していることが明らかとなった¹⁶⁰.

TRPM3 は,脳,腎臓,膵臓などに発現しており D-エリトロ スフィンゴシンなどの脂質成分によって活性化される 161 . そのため,膵 β 細胞でイオノトロピックステロイド受容体として働くと考えられている 162 .

TRPM4 は,脳,心臓,マスト細胞などに発現が見られ,脱分極によって活性化されるため,興奮性細胞における活動電位形成に重要な役割を担っている。そのため TRPM4 の機能が欠損すると,てんかん 163 や不整脈 164 が起こるという報告がある。非興奮性細胞では,TRPM4 は細胞内 Ca^{2+} 濃度上昇 165,166 で活性化され,T細胞における Ca^{2+} オシレーション 167 やマスト細胞の細胞遊走 168 に関わることが明らかにされている。

TRPM5 は,15-35 の温かい温度によって活性化され 169 ,その発現は様々な組織で見られるが,最近,TRPM5 が味覚に関わることが報告された $^{169,170)}$. TRPM5 の発現は味蕾細胞のうち甘味,苦味,うま味を感知する細胞に発現が見られる. TRPM5 欠損マウスは高温下でも甘味化合物に対する応答性の増加を示さなかったのに対し,野生型のマウスは温度を上昇させると甘味に対する応答は増加したことより,TRPM5 は高い温度で活性化して甘味に対する感度を上昇させると考えられている $^{169,170)}$.

TRPM6 は、小腸、腎臓などに発現が見られ、M7 と同様にマグネシウムイオン(Mg^{2+})を通すことから Mg^{2+} 吸収体と考えられている。そのため、M6 に変異が入ると体内への Mg^{2+} 吸収ができなくなり低 Mg^{2+} 血症が起こる 171,172 .

TRPM7 は広範に分布しており、細胞内 MgATP 濃度、 活性酸素種、機械刺激及び pH と様々な刺激で活性が調節 されている。その役割は、細胞容積調節47,接着173)及び成 長174)といった生命活動の維持に関わると考えられている. そのため、適度な活性が重要と考えられており、虚血時に 産生される活性酸素種により TRPM7 が異常活性化した場 合には神経細胞死が起こり⁶⁷、TRPM7を欠損させた細胞 や生物においては生存ができない175,176). TRPM7 は、細胞 膨張、灌流刺激や膜伸展などの機械刺激で活性化されるた め47~49,177), 細胞容積調節47), 細胞遊走49)に関与するのみな らず、TRPM7変異ゼブラフィッシュにおける個体レベル では、接触障害や骨形成異常が起きることも報告されてい る¹⁷⁸⁾. さらに pH によるチャネル活性の調節において、細 胞外 pH を酸性化(pH6 以下)した場合,細胞外からの2 価カチオンの阻害効果を減らすことで1価カチオンの流入 量が増加してチャネルの活性が上昇する58,179,180). これらの イオンチャネルへの H^+ の影響は,グルタミン酸やアスパラギン酸と言った負電荷を帯びたアミノ酸残基が関与しているようである.また,TRPM7 は細胞内を酸性(pH5.6)にした場合には不活性化を起こし,アルカリ性にした場合(pH8.4)には活性化する.この機構は,細胞内の PIP_2 が関与していると考えられている 152 .

TRPM8 は,後根神経節,前立腺,膀胱などに発現が見られ,前立腺ではがんの悪性度との関係が見られる 181,1820 . また,TRPM8 は 25 度以下の冷刺激で活性化したり 72,1830 ,メントール,icilin,frescolat $ML^{72,1840}$ などで活性化したりすることから,周りの環境や清涼剤の感知といった冷感受性を司る"センサー"と考えられている。メントール,icilinによる活性化機構は詳細に調べられており,メントールによる活性化は酸性では抑制されないが,icilinによる活性化は酸性で阻害される 1850 . このことは,これら二つの活性化機構が異なっており,実際にicilinによる活性化に重要な部位は,TRPV1のカプサイシンによる活性化やTRPV4のホルボールエステルによる活性化に重要な部位 1860 と同様に S2-S3 領域であることが報告されている 1870 .

TRPM ファミリーも他のファミリーと同様にシグナル分子、脂質及び骨格タンパク質などと相互作用をしてシグナル伝達を効率化している。シグナル分子としては、TRPM2 や M4 が CaM^{189,190)}、M6 が ERK1/2 の活性¹⁹¹⁾、M7 が PLC β ¹⁵¹⁾ 等と相互作用する報告がある.脂質成分では、TRPM4¹⁹²⁾、M5¹⁹³⁾、M7¹⁹⁴⁾、M8¹⁵⁴⁾が PIP₂、TRPM3 が D-エリトロ スフィンゴシンによって活性化されることが報告されている.TRPM7 は、ミオシン II A 重鎖¹⁹⁵⁾などの細胞骨格タンパク質と相互作用をして活性が制御される.

3-3 TRPV (表 3)

1) 構造的な特徴

TRPV ファミリーは哺乳類において TRPV1-6のメンバーで構成され、N 末端には 6 回の ANKR ドメインが存在する $^{2.196}$. TRPV1、V2、V6 に関しては ANKR の三次元構造が決定されており $^{197\sim200}$ 、特に TRPV1 は、ANKR 内にチャネル活性化に重要な ATP の結合サイトと不活性化に重要な CaM 結合サイトを持つことが示された 197 . 一方、TRPV ファミリーは C 末端領域に TRP-ボックスを有しており、チャネルの活性化ゲーティングや四量体化に重要である 201,202 .

近年、TRPVファミリーでは、TRPV1の構造がクライオ電子顕微鏡を用いて構造解析された。TRPC3と同様に四量体であり、バスケット状の大きな細胞質領域と膜貫通領域にはポア構造が確認されている²⁵.

2)機能的な特徴

ここで紹介する TRPV ファミリーは、機能、配列上の

違いから TRPV1-4 と TRPV5-6 の大きく二つに分けられ

TRPV1-4は、皮膚や神経など感覚に関わる部位に発現 しており、温度、化学物質、膜の脱分極で活性化し、ある 程度の Ca²⁺透過性を示す (Ca²⁺/Na⁺ = 1-10). 一方, TRPV 5-6 は Ca²⁺透過性が高い (Ca²⁺/Na⁺>100) ことが示すよ うに腎臓や腸における Ca²⁺の吸収に関わっており、定常 的活性を持っているが、厳密に細胞内 Ca²⁺濃度によって 制御されている203~208). TRPV ファミリーを活性化する共 通の因子として, 熱や化学物質が知られており, 熱で は、TRPV1 が 43℃ 以上⁵⁵⁾、V2 が 52℃ 以上²⁰⁹⁾、V3 が 30- $39^{\mathbb{C}^{210\sim 212)}}$, V4 が 25-34 \mathbb{C}^{213} で活性化されるというそれぞ れのチャネルで異なる温度依存性を持っている.一方, TRPV5-6 に関して、温度感受性の報告はない、温度依存 性に関する詳細な部位決定はなされていないが、TRPV1 と TRPM8 の C 末端部位の置き換え実験によって、両チャ ネルの温度感受性はC末端が担っているということが示 唆された²¹⁴⁾. 化学物質では, NO が TRPV1, V3, V4 を⁶⁸⁾, 2-aminoethoxydiphenyl borate (2-APB) ⅓ TRPV1-V4, V6 を活性化することが知られている215~218).

TRPV1 は脳、神経などに発現が見られ、カプサイシン のみならず痛みの原因物質と考えられている酸、熱によっ ても活性化する痛み受容体として機能することが TRPV1 欠損マウスを用いた解析から明らかにされた55,219). また TRPV1 は ATP、PGE。、ブラジキニンなどの炎症関連メ ディエーター存在下で、PKC 及び PKA によるリン酸化に よりその活性化閾値が体温以下に低下し、体温でも活性化 されて痛みを惹起しうることが分かった. このため TRPV1 は新規鎮痛薬の標的分子として盛んに研究が進め られている.しかし、近年、TRPV1 阻害剤の投与が体温 に影響を及ぼすことが明らかになり、それらの臨床応用の 際には TRPV1 が担う体温調節機構の詳細を研究する必要 がある2200.一方、チャネルの活性化機構についても数多く の報告がある.酸性 (pH5.9以下) 条件における TRPV1 チャネルの活性に関しては、細胞外領域に存在するグルタ ミン酸残基 (Glu600, Glu648) の中性化に伴うチャネルコ ンフォメーション変化が重要である²²¹⁾. また, 熱やカプサ イシンでのチャネルの活性の上昇には,電位依存性の感受 性の上昇が関与し222,カプサイシンの持続投与によりチャ ネルのポアサイズ及び選択性が変化する等390の詳細な活性 化機構が明らかになりつつある.

TRPV2 は後根神経節や肥満細胞に発現しており、高温を感知するだけでなく機械刺激活性化チャネルとして働き⁴³⁾、細胞膨張などによっても活性化される.マスト細胞における TRPV2 の活性化は脱顆粒及び、その後に起こるヒスタミン放出に関わっていることが示されている²²³⁾.最近、TRPV2 は、大麻の成分の cannabidiol で活性化する²²⁴⁾

ことが報告されており、新たな薬物の標的となるのかもしれない。

TRPV3 は,皮膚などに発現しており,興奮,消炎作用のあるカンフル 225 やハーブとして用いられるオレガノ(カルバクロール) 226 で活性化される.TRPV3 遺伝子上のアミノ酸変異(Gly573Ser)は,無毛形質を基に選抜,系統化されたマウスを遺伝解析した実験から,ヒトで言うアトピー性皮膚炎や薄毛を引き起こす原因であることが明らかになった.本変異はTRPV3 の電位依存性に重要とされている S4-S5 リンカー部に位置し,機能の亢進により細胞内に過剰の Ca^{2+} 流入を引き起こす.角化細胞(ケラチン生成細胞)においては,この異常細胞内 Ca^{2+} 濃度上昇により,皮膚疾患に関与すると考えられている SERCA2,SPCA1 が異常活性化することで無毛形質を引き起こしている可能性が考えられている 225,227,228 .

TRPV4 は肺、腎臓などに発現が多く見られ、細胞外液 浸透圧の減少により活性化する229. その活性化機構は、 低浸透圧による細胞膨張により誘導されるアラキドン酸 産生から、内在性のリガンドであるエイコサトリエン酸 (5,6-epoxyeicosatrienoic acid) を介すると考えられてい る^{187,229~231)}. 事実, TRPV4 欠損マウスは, 血しょう中の浸 透圧調節を感知できないため, 野生型と比べると摂水行動 が損なわれており、血しょう中の浸透圧が高浸透圧になっ ていた²³²⁾. TRPV4 は内耳の蝸牛, 血管条及び螺旋神経節 にも発現が認められ、TRPV4欠損マウスは8週齢までは 通常の聴覚能力を有するが、24週齢を越えると聴覚閾値 が高くなる。このようにTRPV4は遅発性聴覚障害に関与 している可能性がある。子供に生じる感音難聴の50%以 上の要因は遺伝的であり、大部分は非症候性である. 常染 色体優性非症候性難聴(ADNSHL)に対する変異位置は 染色体 12b21-24 であり、この位置には TRPV4 遺伝子が 存在する.

TRPV5、V6 は定常活性化状態であり、 Ca^{2+} の透過性が高い。TRPV5の高発現部位である腎臓 233 、V6 の腸における Ca^{2+} の再吸収に関与している。TRPV5 欠損マウスは Ca^{2+} の再吸収が減弱しているため、高カルシウム尿が検出される。TRPV5 は常染色体優性特発的高カルシウム尿への関与も示唆されている。実際、この変異において TRPV5のコーディング領域は正常だが、5'-側の遺伝子領域で三つの1塩基多型(SNPs)が報告されている。TRPV5、V6は年齢と共に発現量が減少し、 Ca^{2+} の再吸収が減少することから、骨粗しょう症の発症の原因になっていると考えられている。加齢プロセスに重要な Klotho は TRPV5の重要な制御因子である。 β -グルクロニターゼである Klotho は TRPV5 の細胞外に存在する糖鎖を加水分解し、それにより形質膜上で安定に存在させることが知られている。TRPV5 においては、 β -PIP2 や酸・アルカリ刺激による活性

化が詳細に研究されており、 PIP_2 に関しては、TRPV5 は C 末端領域の TRP-ボックスと PIP_2 の相互作用によって活性が上昇する 156). また、細胞内外を酸性条件にするとチャネルが閉口し、アルカリ条件で開口する。このチャネルの開口、閉口には S5-S6 ループ付近の E522 と S6 の後の C 末端部位の K607 の電荷が関わっている 234 .

TRPV ファミリーも他のファミリーと同様にシグナル分 子, 脂質, 骨格タンパク質などと相互作用をしてシグナル 伝達を効率化している. シグナル分子では、TRPV1、V4、 V6 は CaM^{235~238)}, TRPV1 は, phosphoinositide-binding protein (Pirt)²³⁹⁾, fat facets (FAF1)²⁴⁰⁾, PI3K²⁴¹⁾, V2 lt, recombinase gene activator (RGA)²⁴²⁾, V3 lt, PLC²²⁶⁾, V5 lt, Bbox and SPRY-domain containing protein (BSPRY)²⁴³⁾, など の報告がある. 脂質では、TRPV5 は PIP₂ ¹⁵⁴⁾と言った脂質 成分によって活性化されることが報告されている. 細胞骨 格系のタンパク質との相互作用は、V1 はチューブリン²⁴⁴、 V4 は、微小管結合タンパク質 7 (MAP7)²⁴⁵⁾に認められて いる. また、PKC 及び PKA によるリン酸化は TRPV1, V2 の活性増強及び TRPV4 の活性化を惹起させる^{223,246,247)}. こ れには TRPV1, V2 のリン酸化を介した形質膜上での発現 増大が重要であるという説もあり、リン酸化を促す"足場" タンパク質との相互作用も報告されている^{226,248~250)}. TRP チャネルに相互作用するシグナル分子, 脂質, 骨格が集積 しているシグナル伝達の集積場所と言える.

3-4 TRPA (表 4)

1) 構造的な特徴

現在のところ、TRPAファミリーは哺乳類においてはTRPA1の一つで構成されている。TRPA1のN末端にはANKRモデル²⁵¹⁾にも示されているように17個のANKRの構造を持っており、その役割は、チャネルの四量体化やシステイン残基への酸化修飾による構造変化の標的であることが示唆されている。

2)機能的な特徴

TRPA1の生体内における役割は痛みに関する報告が多く、例えば喫煙や炎症による気管における痛み²⁵²、PG などの炎症性メディエーターや細胞内アルカリ化による痛み^{64,253}などの報告がなされた.近年、痛みに関する報告に加えて、TRPA1が呼吸制御に関わるという報告があった²⁵⁴. TRPA1アゴニストである次亜塩素酸、過酸化水素をエアロゾル化し、マウスに吸入させると著しい呼吸回数の低下を引き起こすが、TRPA1欠損マウスではこのような変化は見られなかった.このようにTRPA1は感覚神経・交感神経のみならず副交感神経においても重要な役割を担っていることが明らかになっている。一方、活性化機構についても詳細に研究されている。TRPA1は、脱分極、

細胞内 Ca²⁺濃度上昇, AITC などの刺激物, pH, 機械刺激, 冷感など様々な刺激によって活性化される.

脱分極による活性化は、他のTRPチャネルと同様にS4領域などに明確な正電荷を持つ領域が見当たらず、電位感受性部位に関しては依然として謎は多い。TRPV1やM8で見られた温度と電位依存性の関係で示されたように²²²⁾、TRPA1の電位依存性も冷刺激によって感受性が増大する²⁵⁵⁾。また同様に、細胞内Ca²⁺濃度上昇で電位感受性の増大が見られたこと²⁵⁶⁾から、それぞれの活性化機構は独立していないように見える。

TRPA1の活性化剤については多数の報告がある。刺激物として知られるワサビに含まれる AITC、シナモンに含まれる cinnamaldehyde^{73,257)}やニンニクの成分であるアリシン⁷⁴⁾、汚染物質のアクロレイン²⁵³⁾、またホルムアルデヒド²⁵⁸⁾などで活性化される。これらの活性化機構はいずれもシステイン残基への求電子反応によることが明らかになっている。一方、TRPA1はハーブ成分であるメントール²⁵⁹⁾でも活性化する。この活性化機構は、S5領域にあるセリン、スレオニンへのメントールの結合が重要であるらしい²⁶⁰⁾。また TRPA1はカフェイン²⁶¹⁾や脂質³⁶²によっても活性化するが、これらの活性化機構は現在のところよく分かっていない。

pH 変化による活性化で見られるように、TRPA1 は不思議なことにアンモニアによる細胞内アルカリ化によっても⁶⁴⁾、酸性化によっても活性化が見られる.このことから、刺激物や pH など少しの変化が加わるだけで、開閉状態が変わるような安定性が低いチャネルなのかもしれない.チャネル活性の評価に関してはその不安定さが原因かどうかは不明だが、機械刺激や^{50,253,263)}低温刺激^{73,253,264)}に関しては一致した解釈がなされていない.

3-5 **TRPP** (表 4)

1) 構造的な特徴

TRPP ファミリーは配列上に特有のポリシスチンモチーフを持っており、構造上、大きく二つのポリシスチングループに分類されている。一つは polycystic kidney disease 1-like (PKD1-like, TRPP1-like) であり、もう一つは、polycystic kidney disease 2-like (PKD2-like, TRPP2-like) である255. PKD1-like グループは、PKD1, PKDREJ、PKD1L1、PKD1L2、PKD1L3 であり、この中の PKD1 が TRPP1 と呼ばれる。PKD2-like グループは、PKD2、PKD2L1、PKD2L2であり、後にそれぞれ TRPP2、P3、P5 と呼ばれるようになった3。 TRPP1-like ファミリーと TRPP2-like ファミリーの構造は大きく異なっていて、TRPP1-like ファミリーは11回膜貫通領域と、およそ2500 アミノ酸程度の細胞外領域を持ち、ポア領域は存在しない。一方、TRPP2-like ファミリーは S1-S2 の間に大きなループ領域を持つ。TRPP1

及びP2のC末端はCCドメインを介してチャネルを形成しているという報告がある¹⁸).

2) 機能的な特徴

ADPKD は、腎の皮質、髄質に多数の嚢胞が形成される高羅患率(約0.1%)の疾患である。その原因遺伝子として単離されたのがポリシスチンファミリーである。PKDの85%の原因はTRPP1ファミリーの変異であり、PKDの15%の原因はTRPP2ファミリーの変異によって起こる18.266)

TRPP1、P2 は腎臓²⁶⁷、心臓²⁶⁸、血管平滑筋²⁶⁹⁾など、TRPP3 は脳、心臓、舌など広範に発現している^{270~274)}. 通常、TRPP2 は ER に存在し、ER からの Ca^{2+} 放出を担っている²⁷⁵⁾が、TRPP1 と複合体を形成すると細胞膜上で機能する¹⁸⁾. その機能は細胞周期に関わっており、TRPP1 の発現が JAK-STAT 経路を活性化し p21^{vafl} の発現誘導を引き起こすことで G_0/G_1 期に細胞周期を停止させ、恒常的に上皮細胞の過剰増殖を抑制していると考えられる²⁷⁶⁾. また、TRPP1 と P2 の共発現では低浸透圧刺激による細胞膨張²⁷³⁾や灌流刺激によって¹⁸⁾活性化されることから、上皮細胞における機械受容に関わるようである.

TRPPファミリーは、電位、pHによって制御されているという報告があるが、背反する結果が報告されており、未だ統一的な見解は得られていない。例えば、電位感受性については、TRPP2、P3は、過分極によって活性化される275,277,278)という報告があるが、その一方、TRPP3は脱分極で活性化するという報告もある⁶⁵⁰。pHに関しては、TRPP3が舌でPKD1L3と共発現しており、酸性条件から中性条件に戻すと活性化することで、酸味受容にかかわる¹⁷⁰という報告がある。しかし、一方でTRPP3は単独の発現においてアルカリで活性化されるという報告⁶⁵⁰があり、今後さらなる研究が必要だろう。

TRPP5 は脳, 腎臓, 睾丸などに発現が見られるが²⁷⁹, その生理的, 病理的役割は明らかにされていない.

TRPP ファミリーの特徴として、他の TRP チャネルと相互作用して、新たな機能を発揮させるという報告が多いことがあげられる。例えば、TRPP2 は、P1 と共発現することによって機械刺激の感受 18 、TRPC1 との相互作用によって受容体活性化による細胞内 Ca^{2+} 流入の調節 281 、V4 との共発現によって機械受容の増大 15 、TRPP3 は、PKD1L3 と相互作用による酸感受 275 などがあり、今後、新たに相互作用するチャネルやタンパク質が見つかるかもしれない。

3-6 TRPML (表 4)

1) 構造的な特徴

TRPMLファミリーは現在のところ三つのメンバーが報告されており、アミノ酸配列の長さは600bpと比較的小さ

い. S1-S2 の間のループにはリパーゼドメインを含み, N 末端には核移行シグナル, 推定上の後期エンドソーム-リ ソソーム移行シグナルを持つ.

2) 機能的な特徴

TRPML ファミリーはリソソームに局在し、その発現部位が酸性環境にあることからも予想されるように酸性条件下(pH4.6)で活性化され、種々の2価カチオン及び1価カチオンを透過する $^{(0,282-285)}$.

TRPML1 は H^+ を透過することから $^{(2)}$, マクロファージにおける oxidative burst に関わり,アポトーシス細胞のクリアランスに重要な役割を果たすことが報告された $^{(287)}$.

TRPML1 は,先天代謝異常症(4型ムコリピドーシス)の原因遺伝子として同定され $^{62.288-296}$,細胞内の小胞輸送であるエキソサイトーシス 300 ,リソソームやゴルジ体の輸送 $^{299-301}$ に関わることが報告されている.脳や肝臓など,その発現部位は広範にわたっている 301 .NAADP はリソソーム様の $^{2+}$ ストアからの $^{2+}$ 大別出を起こすメッセンジャー分子であることが知られていたが,直接作用する分子は明らかにされていなかった.最近,その分子実体として TRPML1 が報告された 301 .

TRPML2 は B 細胞における発現が確認されており、ML1 と同じくリソソームの輸送に関わるようである 303 .

TRPML3 は脳や内耳有毛細胞などに発現が見られ, ML3 (A419P) 点変異マウスは耳の疾患, 行動異常(徘徊)の他, 尾の黒色が消失する等の症状を示すことが報告されている^{284,304)}.

4. おわりに

TRP チャネルの多くは Ca^{2+} を透過するが、透過した Ca^{2+} によって起こる細胞応答は、それぞれの TRP チャネルによって異なっている。それは TRP チャネルの "足場" としての役割により、シグナル分子のマイクロドメインが構成されている結果と考えられる。

今後のTRPチャネルの研究はセンサー素子としてのTRPチャネルの分子機構解明と共に、相互作用タンパク質やシグナル分子を含めた、チャネル分子複合体の機能解明が焦点となると考えられる。また、近年盛んに行われている種々のタンパク質の構造解析は、複合体の構造と機能連関の全容解明を大きく前進させていくだろう。さらにこれらの総合的な研究の結果として、未解明な点の多いTRPチャネルの生理的役割の解明が期待される。

文 献

- 1) Montell, C. et al. (1989) Neuron, 2, 1313-1323.
- 2) Clapham, D.E. (2003) Nature, 426, 517-524.

- Moran, M.M. et al. (2004) Curr. Opin. in Neurobiol., 14, 362–369.
- 4) Nilius, B. (2003) Cell Calcium, 33, 293-298.
- Vazquez, G. et al. (2004) Biochem. Biophys. Acta, 1742, 21– 36
- 6) Pedersen, S.F. et al. (2005) Cell Calcium, 38, 233-252.
- 7) Worley, P.F. et al. (2007) Cell Calcium, 42, 205-211.
- 8) Duncan, L.M. et al. (1998) Cancer Res., 58, 1515-1520.
- 9) Benham, C.D. et al. (2003) Cell Calcium, 33, 479–487.
- Nilius, B. et al. (2004) Am. J. Physiol. Cell Physiol., 286, C195–C205.
- 11) Qian, F. et al. (2005) Pflugers Arch., 451, 277-285.
- 12) Cantiello, H. et al. (2005) Pflugers Arch., 451, 304–312.
- Zeevi, D.A. et al. (2007) Biochim. Biophys. Acta, 1772, 851– 858.
- 14) Reeders, S.T. (1992) Nat. Genet., 1, 235-237.
- 15) Köttgen, M. et al. (2008) J. Cell Biol., 182, 437-447.
- 16) Nilius, B. et al. (2007) Physiol. Rev., 87, 165-217.
- 17) Inada, H. et al. (2008) EMBO Rep., 9, 690-697.
- 18) Nauli, S.M. et al. (2003) Nat. Genet., 33, 129-137.
- 19) Jaquemar, D. et al. (1999) J. Biol. Chem., 274, 7325-7333.
- 20) Vannier, B. et al. (1998) J. Biol. Chem., 273, 8675-8679.
- 21) Montell, C. (2005) Sci. STKE, 272, re3.
- 22) Nilius, B. et al. (2005) J. Physiol., 567, 35-44.
- 23) Voets, T. et al. (2007) Nat. Chem. Biol., 3, 174-182.
- 24) Doyle, D.A. et al. (1996) Cell, 85, 1067–1076.
- Moiseenkova-Bell, V.Y. et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 7451–7455.
- 26) Mio, K. et al. (2007) J. Mol. Biol., 367, 373-383.
- 27) Maruyama, Y. et al. (2007) J. Biol. Chem., 282, 36961– 36970
- 28) Patterson, R.L. et al. (2002) Cell, 111, 529-541.
- 29) Nishida, M. et al. (2003) EMBO J., 22, 4677-4688.
- 30) Mori, Y. et al. (2002) J. Exp. Med., 195, 673-681.
- Liu, X. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 17542– 17547.
- 32) Feske, S. et al. (2006) Nature, 441, 179-185.
- 33) Mignen, O. et al. (2008) J. Physiol., 586, 419-425.
- 34) Ji, W. et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 13668– 13673.
- 35) Vig. M. et al. (2006) Curr. Biol., 16, 2073-2079.
- 36) Prakriya, M. et al. (2006) Nature, 443, 230-233.
- 37) Yeromin, A.V. et al. (2006) Nature, 443, 226-229.
- 38) Tominaga, M. et al. (2004) J. Neurobiol., 61, 3-12.
- 39) Voets, T. et al. (2004) Nature, 430, 748-754.
- 40) Chen, J. et al. (2003) Biochem. J., 373, 327-336.
- 41) Maroto, R. et al. (2005) Nat. Cell. Biol., 7, 179-185.
- 42) Inoue, R. et al. (2006) Circ. Res., 99, 119-131.
- 43) Muraki, K. et al. (2003) Circ. Res., 93, 829-838.
- 44) Taniguchi, J. et al. (2007) Am. J. Physiol. Renal Physiol., 292, F667–F673.
- 45) Tian, W. et al. (2004) Am. J. Physiol. Renal Physiol., 287, F17–F24.
- 46) Morita, H. et al. (2007) J. Pharmacol. Sci., 103, 417-426.
- Numata, T. et al. (2007) Am. J. Physiol. Cell Physiol., 292, C460–C467.
- 48) Oancea, E. et al. (2006) Circ. Res., 98, 245-253.
- 49) Wei, C. et al. (2009) Nature, 457, 901-905.
- 50) Corey, D.P. et al. (2004) Nature, 432, 723-730.
- Cortright, D.N. et al. (2007) Biochim. Biophys. Acta, 1772, 978–988.
- 52) Stowers, L. et al. (2002) Science, 295, 1493-1500.

978 〔生化学 第81巻 第11号

- 53) Yeh, B. et al. (2003) J. Biol. Chem., 278, 51044-51052.
- 54) Liu, D. et al. (2005) J. Biol. Chem., 280, 20691-20699.
- 55) Caterina, M.J. et al. (1997) Nature, 389, 816-824.
- 56) Tominaga, M. et al. (1998) Neuron, 21, 531–543.
- 57) Li, M. et al. (2007) J. Biol. Chem., 282, 25817–25830.
- 58) Jiang, J. et al. (2005) J. Gen. Physiol., 126, 137–150.
- 59) Kim, M.J. et al. (2008) Biochem. Biophys. Res. Commun., **365**, 239–245.
- 60) Dong, X. et al. (2008) Nature, 455, 992-996.
- 61) Takahashi, N. et al. (2008) Channels, 2, 287–298.
- 62) Soyombo, A.A. et al. (2006) J. Biol. Chem., 281, 7294-7301.
- 63) Numata, T. et al. (2008) J. Biol. Chem., 283, 15097-15103.
- 64) Fujita, F. et al. (2008) J. Clin. Invest., 118, 4049-4057.
- 65) Shimizu, T. et al. (2009) *Pflugers Arch.*, 457, 795–807.
- 66) Hara, Y. et al. (2002) Mol. Cell, 9, 163-173.
- 67) Aarts, M. et al. (2003) Cell, 115, 863-877.
- 68) Yoshida, T. et al. (2006) Nat. Chem. Biol., 2, 596-607.
- 69) Dhaka, A. et al. (2009) J. Neurosci., 29, 153-158.
- 70) Caterina, M.J. et al. (2000) Science, 288, 306-313.
- 71) Davis, J.B. et al. (2000) Nature, 405, 183–187.
- 72) Peier, A.M. et al. (2002) Cell, 108, 705-715.
- 73) Jordt, S. et al. (2004) *Nature*, 427, 260–265.
- 74) Macpherson, L.J. et al. (2005) Curr. Biol., 15, 929–934.
- 75) Shieh, B.H. et al. (1995) Neuron, 14, 201-210.
- 76) Kiselyov, K. et al. (2005) Pflugers Arch., 451, 116–124.
- Ogura, T. et al. (2005) Biochem. Biophys. Res. Commun., **333**, 768–777.
- 78) Mio, K. et al. (2008) J. Synchrotron Radiat., 15, 211-214.
- 79) Xu, X.Z. et al. (1998) J. Cell Biol., 142, 545-555.
- 80) Ambudkar, I.S. et al. (2007) Pflugers Arch., 455, 187–200.
- Sinkins, W.G. et al. (2004) J. Biol. Chem., 279, 34521-34529.
- 82) Hofmann, T.et al. (2002) Proc. Natl. Acad. Sci. USA, 99, 7461-7466.
- 83) Strübing, C. et al. (2001) Neuron, 29, 645-655.
- 84) Abramowitz, J. et al. (2009) FASEB J., 23, 297–328.
- 85) Wang, G.X. et al. (2005) *Nature*, 434, 898–904.
- 86) Shim, S. et al. (2005) Nat. Neurosci., 6, 730–735.
- 87) Lockwich, T.P. et al. (2000) J. Biol. Chem., 16, 11934-11942.
- 88) Bollimuntha, S. et al. (2005) Vis. Neurosci., 22, 163–170.
- 89) Mehta, D. et al. (2003) J. Biol. Chem., 278, 33492–33500.
- 90) Yuan, J.P. et al. (2003) Cell, 6, 777-789.
- 91) Jho, D. et al. (2005) Circ. Res., 96, 1282-1290.
- 92) Wes, P.D. et al. (1995) Proc. Natl. Acad. Sci. USA, 92, 9652-9656.
- 93) Ambudkar, I.S. et al. (2007) Cell Calcium, 42, 213-223.
- 94) Huang, G.N. et al. (2006) Nat. Cell Biol., 8, 1003–1010.
- 95) Menniti, F.S. et al. (1991) J. Biol. Chem., 266, 13646–13653.
- 96) López, J.J. et al. (2006) J. Biol. Chem., 281, 28254-28264.
- 97) Ong, H.L. et al. (2007) J. Biol. Chem., 282, 9105-9116.
- 98) Kunzelmann-Marche, C. et al. (2002) J. Biol. Chem., 277, 19876-19881.
- 99) Hofmann, T. et al. (2002) Proc. Natl. Acad. Sci. USA, 99, 7461-7466.
- 100) Chu, X. et al. (2004) J. Biol. Chem., 279, 10514-10522.
- 101) Tong, Q. et al. (2004) Am. J. Physiol. Cell Physiol., 287, C1667-C1678.
- 102) Jungnickel, M.K. et al. (2001) Nat. Cell Biol., 3, 499-502.
- 103) Lucas, P. et al. (2003) Neuron, 40, 551-561.
- 104) Gailly, P. et al. (2001) Cell Calcium, 30, 157-165.
- 105) Gailly, P. (2002) Biochim. Biophys. Acta, 1600, 38-44.

- 106) Hofmann, T. et al. (1999) Nature, 397, 259-263.
- 107) Lintschinger, B. et al. (2000) J. Biol. Chem., 275, 27799-27805.
- 108) Ma, H.T. et al. (2000) Science, 287, 1647–1651.
- 109) Kwan, H.Y. et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 2625-2630.
- 110) Kwan, H.Y. et al. (2006) J. Cell Physiol., 207, 315–321.
- 111) Vazquez, G. et al. (2004) J. Biol. Chem., 279, 40521–40528.
- 112) Li, H.S. et al. (1999) Neuron, 1, 261-273.
- 113) Kiselyov, K.I. et al. (2000) Mol. Cell, 6, 421-431.
- 114) Bandyopadhyay, B.C. et al. (2005) J. Biol. Chem., 280, 12908-12916.
- 115) Vazquez, G. et al. (2002) EMBO J., 21, 4531-4538.
- 116) Kim, J.Y. et al. (2006) J. Biol. Chem., 281, 32540–32549.
- 117) Wedel, B.J. et al. (2003) J. Biol. Chem., 278, 25758–25765.
- 118) Boulay, G. (2002) Cell Calcium, 32, 201–207.
- Patterson, R.L. et al. (2005) Trends Biochem. Sci., 30, 688-
- 120) Onohara, N. et al. (2006) EMBO J., 22, 5305-5316.
- 121) Bush, E.W. et al. (2006) J. Biol. Chem., 44, 33487-33496.
- 122) Brenner, J.S. et al. (2007) PLoS ONE, 8, e802.
- 123) Hartmann, J. et al. (2008) Neuron, 59, 392–398.
- 124) Nakayama, H. et al. (2006) FASEB J., 20, 1660–1670.
- 125) Kuwahara, K. et al. (2006) J. Clin. Invest., 116, 3114–3126.
- 126) Rosker, C. et al. (2004) J. Biol. Chem., 279, 13696-13704.
- 127) Obukhov, A.G. et al. (2004) J. Cell Physiol., 201, 227-235.
- 128) Torihashi, S. et al. (2002) J. Biol. Chem., 277, 19191-19197.
- 129) Freichel, M. et al. (2001) Nat. Cell Biol., 3, 121-127.
- 130) Schaefer, M. et al. (2000) J. Biol. Chem., 275, 17517-17526.
- 131) Jung, S. et al. (2003) J. Biol. Chem., 278, 3562–3571.
- 132) Greka, A. et al. (2003) Nat. Neurosci., 6, 837-845.
- 133) Bezzerides, V.J. et al. (2004) Nat. Cell. Biol., 6, 709–720.
- 134) Hui, H. et al. (2006) J. Physiol., 572, 165-172.
- 135) Inoue, R. et al. (2001) Circ. Res., 88, 325-332.
- 136) Zhang, L. et al. (2001) J. Biol. Chem., 276, 13331–13339.
- Spassova, M.A. et al. (2006) Proc. Natl. Acad. Sci. USA, 103, 16586-16591.
- 138) Hisatsune, C. et al. (2004) J. Biol. Chem., 279, 18887-18894.
- 139) Dietrich, A. et al. (2005) Mol. Cell Biol., 25, 6980–6989.
- 140) Sel, S. et al. (2008) Clin. Exp. Allergy, 38, 1548–1558.
- 141) Welsh, D.G. et al. (2002) Circ. Res., 90, 248–250.
- 142) Lussier, M.P. et al. (2005) J. Biol. Chem., 280, 19393–19400.
- 143) Okada, T. et al. (1999) J. Biol. Chem., 274, 27359-27370.
- 144) Satoh, S. et al. (2007) Mol. Cell Biochem., 294, 205-215.
- 145) Föller, M. et al. (2006) Cell. Physiol. Biochem., 17, 201-210. 146) Fujiwara, Y. et al. (2008) J. Mol. Biol., 383, 854-870.
- 147) Erler, I. et al. (2006) J. Biol. Chem., 281, 38396-38404.
- 148) Tsuruda, P.R. et al. (2006) Neuron, 51, 201–212.
- 149) Perraud, A. et al. (2001) *Nature*, 411, 595–599.
- 150) Kolisek, M. et al. (2005) Mol. Cell, 18, 61-69.
- 151) Runnels, L.W. et al. (2001) Science, 291, 1043-1047.
- 152) Kozak, J.A. et al. (2005) J. Gen. Physiol., 126, 499-514.
- 153) Schmitz, C. et al. (2005) J. Biol. Chem., 280, 37763-37771.
- 154) Rohács, T. et al. (2005) Nat. Neurosci., 8, 626-634.
- 155) Nilius, B. et al. (2006) EMBO J., 25, 467-478.
- 156) Yamaguchi, H. et al. (2001) Mol. Cell, 7, 1047-1057.
- 157) Bellone, R.R. et al. (2008) Genetics, 179, 1861-1870.
- 158) Togashi, K. et al. (2006) EMBO J., 25, 1804–1815.
- 159) Sano, Y. et al. (2001) Science, 293, 1327-1330.
- 160) Yamamoto, S. et al. (2008) Nat. Med., 14, 738-747. 161) Grimm, C. et al. (2005) Mol. Pharmacol., 67, 798-805.
- 162) Wagner, T.F. et al. (2008) Nat. Cell Biol., 10, 1421-1430.

- 163) Simard, J.M. et al. (2006) Nat. Med., 12, 433-440.
- 164) Guinamard, R. et al. (2004) J. Physiol., 558, 75-83.
- 165) Nilius, B. et al. (2003) J. Biol. Chem., 278, 30813-30820.
- 166) Hofmann, T. et al. (2003) Curr. Biol., 13, 1153-1158.
- 167) Launay, P. et al. (2004) *Science*, 306, 1374–1377.
- 168) Vennekens, R. et al. (2007) Nat. Immunol., 8, 312–320.
- 169) Talavera, K. et al. (2005) *Nature*, 438, 1022–1025.
- 170) Zhang, Y. et al. (2003) Cell, 112, 293-301.
- 171) Walder, R.Y. et al. (2002) Nat. Genet., 31, 171-174.
- 172) Schlingmann, K.P. et al. (2002) Nat. Genet., 31, 166-170.
- 173) Su, L. et al. (2006) J. Biol. Chem., 281, 11260-11270.
- 174) Hanano, T. et al. (2004) J. Pharmacol. Sci., 95, 403-419.
- 175) Schmitz, C. et al. (2003) Cell, 114, 191–200.
- 176) Jin, J. et al. (2008) Science, 322, 756–760.
- 177) Numata, T. et al. (2007) Cell. Physiol. Biochem., 19, 1-8.
- 178) Elizondo, M.R. et al. (2005) Curr. Biol., 15, 667-671.
- 179) Li, M. et al. (2006) J. Gen. Physiol., 127, 525-537.
- 180) Numata, T. et al. (2008) Channels, 2, 283-286.
- 181) Tsavaler, L. et al. (2001) Cancer Res., 61, 3760-3769.
- 182) Zhang, L. et al. (2004) Cancer Res., 64, 8365-8373.
- 183) Bautista, D.M. et al. (2007) Nature, 448, 204-208.
- 184) McKemy, D.D. et al. (2002) Nature, 416, 52-58.
- 185) Andersson, D.A. et al. (2004) J. Neurosci., 24, 5364–5369.
- 186) Jordt, S.E. & Julius, D. (2002) Cell, 108, 421-430.
- 187) Vriens, J. et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 396–401
- 188) Chuang, H.H. et al. (2004) Neuron, 43, 859-869.
- 189) Tong, Q. et al. (2006) J. Biol. Chem., 281, 9076-9085.
- 190) Nilius, B. et al. (2005) J. Biol. Chem., 280, 6423-6433.
- 191) Ikari, A. et al. (2008) Biochem. Biophys. Res. Commun., 369, 1129–1133.
- 192) Nilius, B. et al. (2006) Pflugers Arch., 453, 313-321.
- 193) Liu, D. et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 15160– 15165.
- 194) Runnels, L.W. et al. (2002) Nat. Cell Biol., 4, 329-336.
- 195) Clark, K. et al. (2006) EMBO J., 25, 290-301.
- 196) Montell, C. (2001) Sci. STKE., RE1.
- 197) Lishko, P.V. et al. (2007) Neuron, 54, 905–918.
- 198) Jin, X. et al. (2006) J. Biol. Chem., 281, 25006–25010.
- 199) McCleverty, C.J. et al. (2006) Protein Sci., 15, 2201–2206.
- 200) Phelps, C.B. et al. (2008) Biochemistry, 47, 2476–2484.
- 201) Garcia-Sanz, N. et al. (2004) J. Neurosci., 24, 5307-5314.
- 202) Garcia-Sanz, N. et al. (2007) J. Neurosci., 27, 11641-11650.
- 203) Nilius, B. et al. (2001) Cell Calcium, 29, 417-428.
- 204) Nilius, B. et al. (2000) J. Physiol., 527, 239-248.
- 205) Nilius, B. et al. (2001) J. Biol. Chem., 276, 1020-1025.
- 206) Vennekens, R. et al. (2000) J. Biol. Chem., 275, 3963-3969.
- 207) Vennekens, R. et al. (2001) J. Physiol., 530, 183-191.
- 208) Yue, L. et al. (2001) Nature, 410, 705-709.
- 209) Caterina, M.J. et al. (1999) Nature, 398, 436-441.
- 210) Xu, H. et al. (2002) Nature, 418, 181-186.
- 211) Peier, A.M. et al. (2002) Science, 296, 2046-2049.
- 212) Smith, G.D. et al. (2002) Nature, 418, 186-190.
- 213) Güler, A.D. et al. (2002) J. Neurosci., 22, 6408-6414.
- 214) Brauchi, S. et al. (2006) J. Neurosci., 26, 4835–4840.
- 215) Wisnoskey, B.J. et al. (2003) Biochem. J., 372, 517-528.
- 216) Hu, H. et al. (2004) J. Biol. Chem., 279, 35741-35748.
- 217) Chung, M. et al. (2004) J. Neurosci., 24, 5177–5182.
- 218) Hu, H. et al. (2009) Proc. Natl. Acad. Sci. USA, 106, 1626– 1631.
- 219) Davis, J.B. et al. (2000) Nature, 405, 183-187.
- 220) Gavva, N.R. et al. (2007) J. Neurosci., 27, 3366-3374.

- 221) Jordt, S.E. et al. (2000) Proc. Natl. Acad. Sci. USA, 97, 8134–8139.
- 222) Chung, M. et al. (2008) Nat. Neurosci., 11, 555-564.
- 223) Stokes, A.J. et al. (2004) J. Exp. Med., 200, 137–147.
- 224) Qin, N. et al. (2008) J. Neurosci., 28, 6231-6238.
- 225) Moqrich, A. et al. (2005) Science, 307, 1468–1472.
- 226) Xu, H. et al. (2006) Nat. Neurosci., 9, 628-635.
- 227) Asakawa, M. et al. (2006) J. Invest. Dermatol., 126, 2664–2672.
- 228) Chung, M. et al. (2005) J. Biol. Chem., 280, 15928-15941.
- 229) Strotmann, R. et al. (2000) Nat. Cell Biol., 2, 695–702.
- 230) Liedtke, W. et al. (2000) Cell, 103, 525-535.
- 231) Vriens, J. et al. (2005) Circ. Res., 97, 908-915.
- 232) Liedtke, W. et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 13698–13703.
- 233) Hoenderop, J.G. et al. (2003) J. Clin. Invest., 112, 1906– 1914.
- 234) Yeh, B.I. et al. (2005) EMBO J., 24, 3224-3234.
- 235) Rosenbaum, T. et al. (2004) J. Gen. Physiol., 123, 53-62.
- 236) Numazaki, M. et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 8002–8006.
- 237) Strotmann, R. et al. (2003) J. Biol. Chem., 278, 26541–26549.
- 238) Lambers, T.T. et al. (2004) J. Biol. Chem., 279, 28855-28861
- 239) Kim, A.Y. et al. (2008) Cell, 133, 475-485.
- 240) Kim, S. et al. (2006) J. Neurosci., 26, 2403-2412.
- 241) Stein, A.T. et al. (2006) J. Gen. Physiol., 128, 509-522.
- 242) Barnhill, J.C. et al. (2004) J. Cell Biochem., 91, 808-820.
- 243) van de Graaf, S.F.J. et al. (2006) *J. Am. Soc. Nephrol.*, 17, 26–30
- 244) Goswami, C. et al. (2004) J. Neurochem., 91, 1092-1103.
- 245) Suzuki, M. et al. (2003) J. Biol. Chem., 278, 51448-51453.
- 246) Bhave, G. et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 12480–12485.
- 247) Bhave, G. et al. (2002) Neuron, 35, 721-731.
- 248) Morenilla-Palao, C. et al. (2004) J. Biol. Chem., 279, 25665–25672.
- 249) Zhang, X. et al. (2005) EMBO J., 24, 4211-4223.
- 250) Stokes, A.J. et al. (2005) J. Cell Biochem., 94, 669–683.
- 251) Gaudet, R. (2008) Mol. Biosyst., 4, 372-379.
- 252) Andrè, E. et al. (2008) J. Clin. Invest., 118, 2574-2582.
- 253) Bautista, D.M. et al. (2006) Cell, 124, 1269-1282.
- 254) Bessac, B.F. et al. (2008) J. Clin. Invest., 118, 1899-1910.
- 255) Karashima, Y. et al. (2009) Proc. Natl. Acad. Sci. USA, 106, 1273–1278.
- 256) Karashima, Y. et al. (2008) Pflugers Arch., 457, 77-89.
- 257) Macpherson, L.J. et al. (2007) *Nature*, 445, 541–545.
- 258) McNamara, C.R. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 13525–13530.
- 259) Karashima, Y. et al. (2007) J. Neurosci., 27, 9874-9884.
- 260) Xiao, B. et al. (2008) J. Neurosci., 28, 9640-9651.
- 261) Nagatomo, K. et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 17373–17378.
- 262) Maher, M. et al. (2008) Mol. Pharmacol., 73, 1225-1234.
- 263) Kwan, K.Y. et al. (2006) Neuron, 50, 277-289.
- 264) Zurborg, S. et al. (2007) Nat. Neurosci., 10, 277–279.
- 265) Delmas, P. (2004) Cell, 118, 145-148.

268) Wu, G. et al. (1998) Cell, 93, 177-188.

- 266) Kimberling, W.J. et al. (1988) J. Med., 319, 913–918.
- 267) Peters, D.J. et al. (1992) Contrib. Nephrol., 97, 128–139.
- 269) Wu, G. et al. (2000) Nat. Genet., 24, 75-78.

〔生化学 第81巻 第11号

- 270) Qian, Q. et al. (2003) Hum. Mol. Genet., 12, 1875-1880.
- 271) Wu, G. et al. (1998) Genomics, 54, 564-568.
- 272) Veldhuisen, B. et al. (1999) Eur. J. Hum. Genet., 7, 860-872.
- 273) Nomura, H. et al. (1998) J. Biol. Chem., 273, 25967–25973.
- 274) Murakami, M. et al. (2005) J. Biol. Chem., 280, 5626-5635.
- 275) Ishimaru, Y. et al. (2006) Proc. Natl. Acad. Sci. USA, 103, 12569–12574.
- 276) Koulen, P. et al. (2002) Nat. Cell Biol., 4, 191-197.
- 277) Bhunia, A.K. et al. (2002) Cell, 109, 157–168.
- 278) Gonzalez-Perrett, S. et al. (2002) J. Biol. Chem., 277, 24959–24966
- 279) Huang, A.L. et al. (2006) *Nature*, 7105, 934–938.
- 280) Guo, L. et al. (2000) Genomics, 64, 241-251.
- 281) Kraft, R. et al. (2004) Am. J. Physiol. Cell Physiol., 286, C129–C137.
- 282) Tsiokas, L. et al. (1999) Proc. Natl. Acad. Sci. USA, 96, 3934–3939.
- 283) LaPlante, J.M. et al. (2002) FEBS Lett., 532, 183-187.
- 284) Xu, H. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 18321– 18326
- 285) Nagata, K. et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 353–358.
- 286) Kim, H.J. et al. (2008) EMBO J., 27, 1197-1205.
- 287) Venkatachalam, K. et al. (2008) Cell, 135, 838-851.
- 288) Tüysüz, B. et al. (2008) Brain Dev., 31, 702-705.
- 289) Bach, G. (2001) Mol. Genet. Metab., 73, 197-203.
- 290) Slaugenhaupt, S.A. (2002) Curr. Mol. Med., 2, 445-450.
- 291) Altarescu, G. et al. (2002) *Neurology*, 59, 306–313.
- 292) Bargal, R. et al. (2002) Neuropediatrics, 33, 199–202.
- 293) Raychowdhury, M.K. et al. (2004) Hum. Mol. Genet., 13, 617–627.
- 294) LaPlante, J.M. et al. (2004) Biochem. Biophys. Res. Commun., 322, 1384–1391.
- 295) Piper, R.C. et al. (2004) Trends Cell Biol., 14, 471-473.
- 296) Bach, G. (2005) Pflugers Arch., 451, 313-317.
- 297) LaPlante, J.M. et al. (2006) Mol. Genet. Metab., 89, 339–348.
- 298) Vergarajauregui, S. et al. (2008) Hum. Mol. Genet., 17, 2723–2737.
- 299) Bargal, R. et al. (1997) J. Inherit. Metab. Dis., 20, 625-632.
- 300) Thompson, E.G. et al. (2007) Cell Biol., 8, 54.
- 301) Glusman, G. et al. (2000) Nat. Genet., 26, 118-123.
- 302) Zhang, F. et al. (2008) J. Cell Mol. Med.
- 303) Song, Y. et al. (2006) Eur. J. Cell Biol., 85, 1253-1264.
- 304) van Aken, A.F.J. et al. (2008) J. Physiol., 586, 5403-5418.
- 305) Engelke, M. et al. (2002) FEBS Lett., 523, 193-199.
- 306) Lockwich, T. et al. (2008) J. Proteome Res., 7, 979-989.
- 307) Beech, D. (2007) J. Handb. Exp. Pharmacol., 179, 109-123.
- 308) Lepage, P.K. et al. (2006) J. Biol. Chem., 281, 30356-30364.
- 309) Vannier, B. et al. (1999) Proc. Natl. Acad. Sci. USA, 96, 2060–2064.
- 310) Trebak, M. (2006) Drug Discov. Today, 11, 924-930.
- 311) Xu, X.Z. et al. (2000) Neuron, 26, 647-657.
- 312) Zitt, C. et al. (1997) J. Cell Biol., 138, 1333-1341.
- 313) Liman, E.R. et al. (1999) *Proc. Natl. Acad. Sci. USA*, 96, 5791–5796.
- 314) Zagranichnaya, T.K. et al. (2005) *J. Biol. Chem.*, **280**, 29559–29569.
- 315) Wynn, R.M. et al. (2003) J. Biol. Chem., 278, 43402–43410.
- 316) Barrera, N.P. et al. (2007) Biochem. Biophys. Res. Commun., 358, 1086–1090.
- 317) Okada, T. et al. (1998) J. Biol. Chem., 273, 10279-10287.

- 318) Kawasaki, B.T. et al. (2006) Proc. Natl. Acad. Sci. USA, 103, 335–340.
- 319) Strübing, C. et al. (2003) J. Biol. Chem., 278, 39014-39019.
- 320) Cioffi, D.L. et al. (2003) Cell Calcium., 33, 323-336.
- 321) Lee, N.T. et al. (1989) J. Biol. Chem., 264, 7523-7530.
- 322) Alfonso, S. et al. (2008) Cell Calcium., 43, 375–387.
- 323) Du, J. et al. (2008) Am. J. Physiol. Renal Physiol., 294, F909–918.
- 324) Liu, X. et al. (2005) J. Biol. Chem., 280, 21600-21606.
- 325) Murata, T. et al. (2007) J. Biol. Chem., 282, 16631–16643.
- 326) Rosado, J.A. et al. (2002) J. Biol. Chem., 277, 42157-42163.
- 327) Xu, X.Z. et al. (1997) Cell, 89, 1155-1164.
- 328) Lockwich, T. et al. (2001) J. Biol. Chem., 276, 42401–42408.
- 329) van Rossum, D.B. et al. (2005) Nature, 434, 99-104.
- 330) Wen, W. et al. (2006) J. Biol. Chem., 281, 12060-12068.
- 331) Tang, Y. et al. (2000) J. Biol. Chem., 275, 37559-37564.
- 332) Zeng, W. et al. (2008) Mol. Cell, 32, 439-448.
- 333) Goel, M. et al. (2002) J. Biol. Chem., 277, 48303-48310.
- 334) Stamboulian, S. et al. (2005) Dev. Biol., 286, 326–337.
- 335) Sutton, K.A. et al. (2004) Dev. Biol., 274, 426-435.
- 336) McKay, R.R. et al. (2000) Biochem. J., 351, 735-746.
- 337) Sergeeva, O.A. et al. (2003) J. Neurochem., 85, 1547-1552.
- 338) Philipp, S. et al. (1998) EMBO J., 17, 4274–4282.
- 339) Chung, Y.H. et al. (2006) Brain. Res., 1085, 132–137.
- 340) Wang, M. et al. (2007) J. Neurochem., 101, 411-421.
- 341) Riccio, A. et al. (2002) Brain Res. Mol. Brain Res., 109, 95-
- 342) Philipp, S. et al. (1996) EMBO J., 15, 6166-6171.
- 343) Dalrymple, A. et al. (2002) Mol. Hum. Reprod., 8, 946-951.
- 344) Inoue, R. et al. (2002) Novartis Found Symp., 246, discussion 221–7.
- 345) Lee, K.P. et al. (2005) Mol. Cells, 20, 435-441.
- 346) Wang, X. et al. (2004) Am. J. Physiol. Cell Physiol., 287, C357–364.
- 347) Elg, S. et al. (2007) J. Comp. Neurol., 503, 35–46.
- 348) Corteling, R.L. et al. (2004) Am. J. Respir. Cell Mol. Biol., 30, 145–154.
- 349) Wang, W. et al. (1999) Am. J. Physiol., 276, C969–979.
- 350) De March, Z. et al. (2006) Neurosci. Lett., 402, 35-39.
- 351) Treviño, C.L. et al. (2001) FEBS Lett., 509, 119–125.
- 352) den Dekker, E. et al. (2001) *Biochim. Biophys. Acta*, **1539**, 243–255.
- 353) Hassock, S.R. et al. (2002) Blood, 100, 2801-2811.
- 354) Berg, L.P. et al. (1997) FEBS Lett., 403, 83-86.
- 355) Goel, M. et al. (2006) Am. J. Physiol. Renal Physiol., 290, F1241-1252.
- 356) Hofmann, T. et al. (2000) Biochem. J., 351, 115-122.
- 357) Menco, B.P. et al. (2001) J. Comp. Neurol., 438, 468-489.
- 358) Ohki, G. et al. (2000) J. Biol. Chem., 275, 39055-39060.
- 359) Inada, H. et al. (2006) *Biochem. Biophys. Res. Commun.*, 350, 762–767.
- 360) Zhu, X. et al. (1996) Cell, 85, 661-671.
- 361) Hartmann, J. et al. (2008) Neuron, 59, 392-398.
- 362) Sel, S. et al. (2008) Clin. Exp. Allergy, 38, 1548-1558.
- 363) Sossey-Alaoui, K. et al. (1999) Genomics, 60, 330-340.
- 364) Mizuno, N. et al. (1999) Brain Res. Mol. Brain Res., 64, 41-51
- 365) Diver, J.M. et al. (2001) Cell Calcium, 30, 323-329.
- 366) Dietrich, A. et al. (2007) Pflugers Arch., 455, 465–477.
- 367) Sweeney, M. et al. (2002) Am. J. Physiol. Lung Cell Mol. Physiol., 283, L144–155.
- 368) Zhang, Z. et al. (2001) Biochem. J., 354, 717-725.

- 369) Liu, X. et al. (2000) J. Biol. Chem., 275, 3403-3411.
- 370) Bair, A.M. et al. (2009) J. Biol. Chem., 284, 563-574.
- 371) Wu, X. et al. (2000) Am. J. Physiol. Cell Physiol., 278, C526–536
- 372) Kim, S.J. et al. (2003) *Nature*, 426, 285–291.
- 373) Beech, D.J. (2005) Clin. Exp. Pharmacol. Physiol., 32, 597–603
- 374) Bollimuntha, S. et al. (2005) J. Biol. Chem., 280, 2132-2140.
- 375) Kumar, B. et al. (2006) Circ. Res., 98, 557–563.
- 376) Ward, M.L. et al. (2008) Prog. Biophys. Mol. Biol., 97, 232–249.
- 377) Wilkins, B.J. et al. (2004) Biochem. Biophys. Res. Commun., 322, 1178–1191.
- 378) Vandebrouck, C. et al. (2002) J. Cell Biol., 158, 1089-1096.
- 379) Zhang, S. et al. (2007) Am. J. Physiol. Lung Cell Mol. Physiol., 292, L1202–1210.
- 380) Lin, M.J. et al. (2004) Circ. Res., 95, 496-505.
- 381) Zhang, D. et al. (2009) Am. J. Nephrol., 29, 244-251.
- 382) Niehof, M. et al. (2008) Diabetes, 57, 1069-1077.
- 383) Yildirim, E. et al. (2007) *Handb. Exp. Pharmacol.*, **179**, 53–75
- 384) Zhang, J. et al. (2003) *Proc. Natl. Acad. Sci. USA*, 100, 8337–8341.
- 385) Leypold, B.G. et al. (2002) *Proc. Natl. Acad. Sci. USA*, 99, 6376–6381.
- 386) Zufall, F. et al. (2005) Pflugers Arch., 451, 61-71.
- 387) Lee, E.H. et al. (2006) J. Biol. Chem., 281, 10042-10048.
- 388) Boulay, G. et al. (1999) Proc. Natl. Acad. Sci. USA, 96, 14955–14960.
- 389) Mio, K. et al. (2005) Biochem. Biophys. Res. Commun., 333, 768-777.
- 390) Birnbaumer, L. et al. (1996) Proc. Natl. Acad. Sci. USA, 93, 15195–15202.
- 391) Hurst, R.S. et al. (1998) FEBS Lett., 422, 333-338.
- 392) Zhang, Z. et al. (2001) *Proc. Natl. Acad. Sci. USA*, 98, 3168–3173.
- 393) Preuss, K.D. et al. (1997) Biochem. Biophys. Res. Commun., 240, 167–172.
- 394) Xi, Q. et al. (2008) Circ. Res., 102, 1118-1126.
- 395) Lièvremont, J.P. et al. (2004) Am. J. Physiol. Cell Physiol., 287, C1709–1716.
- 396) Lievremont, J.P. et al. (2005) Mol. Pharmacol., 68, 758-762.
- 397) Liu, C.L. et al. (2006) Acta Pharmacol. Sin., 27, 981-990.
- 398) Philipp, S. et al. (2003) J. Biol. Chem., 278, 26629-26638.
- 399) Li, Y. et al. (2005) Nature, 434, 894-898.
- 400) Balzer, M. et al. (1999) Cardiovasc. Res., 42, 543-549.
- 401) Smedlund, K. et al. (2008) Arterioscler. Thromb. Vasc. Biol., 28, 2049–2055.
- 402) Poteser, M. et al. (2008) FEBS Lett., 582, 2696-2702.
- 403) Yu, Y. et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 13861– 13866.
- 404) Liu, D. et al. (2009) Hypertension, 53, 70-76.
- 405) Liu, D.Y. et al. (2007) Am. J. Hypertens., 20, 1111-1118.
- 406) Liu, D. et al. (2005) Am. J. Hypertens., 18, 1503-1507.
- 407) Tiruppathi, C. et al. (2002) Circ. Res., 91, 70-76.
- 408) Munsch, T. et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 16065–16070.
- 409) Ordaz, B. et al. (2005) J. Biol. Chem., 280, 30788-30796.
- 410) Foster, M.W. et al. (2006) Nat. Chem. Biol., 2, 570-571.
- 411) Xu, S.Z. et al. (2005) Br. J. Pharmacol., 145, 405-414.
- 412) Lee, Y.M. et al. (2003) Am. J. Physiol. Gastrointest. Liver Physiol., 284, G604–616.

- 413) Liu, X. et al. (2003) J. Biol. Chem., 278, 11337-11343.
- 414) Jung, S. et al. (2002) Am. J. Physiol. Cell Physiol., 282, C347–359.
- 415) Shi, J. et al. (2004) J. Physiol., 561, 415–432.
- 416) Tseng, P.H. et al. (2004) Biochemistry, 43, 11701-11708.
- 417) Basora, N. et al. (2003) J. Biol. Chem., 278, 31709-31716.
- 418) Yu, Y. et al. (2003) Am. J. Physiol. Cell Physiol., 284, C316-330.
- 419) Hamdollah Zadeh, M.A. et al. (2008) Microcirculation. 15, 605–614.
- 420) Reiser, J. et al. (2005) Nat. Genet., 37, 739–744.
- 421) Winn, M.P. et al. (2005) Science, 308, 1801-1804.
- 422) Dietrich, A. et al. (2005) Mol. Cell. Biol., 25, 6980-6989.
- 423) Vazquez, G. et al. (2006) J. Biol. Chem., 281, 25250-25258.
- 424) Lievremont, J.P. et al. (2005) J. Biol. Chem., 280, 35346–35351.
- 425) Nagata, K. et al. (2005) J. Neurosci., 25, 4052-4061.
- 426) Story, G.M. et al. (2003) Cell, 112, 819-829.
- 427) Chen, J. et al. (2009) Mol. Pain, 5, 3.
- 428) Bautista, D.M. et al. (2005) Proc. Natl. Acad. Sci. USA, 102, 12248–12252.
- 429) Bandell, M. et al. (2004) Neuron, 41, 849-857.
- 430) Wang, Y.Y. et al. (2008) J. Biol. Chem., 283, 32691–32703.
- 431) Doerner, J.F. et al. (2007) J. Biol. Chem., 282, 13180-13189.
- 432) Trevisani, M. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 13519–13524.
- 433) Andersson, D.A. et al. (2008) J. Neurosci., 28, 2485-2494.
- 434) Sawada, Y. et al. (2008) Eur. J. Neurosci., 27, 1131-1142.
- 435) Cruz-Orengo, L. et al. (2008) Mol. Pain, 4, 30.
- 436) Xu, H. et al. (2005) J. Neurosci., 25, 8924-8937.
- 437) Niforatos, W. et al. (2007) Mol. Pharmacol., 71, 1209-1216.
- 438) Kim, D. et al. (2007) J. Neurosci., 27, 6500-6509.
- 439) Fajardo, O. et al. (2008) J. Neurosci., 28, 7863-7875.
- 440) Sawada, Y. et al. (2007) Brain Res., 1160, 39-46.
- 441) Dai, Y. et al. (2007) J. Clin. Invest., 117, 1979-1987.
- 442) Petrus, M. et al. (2007) Mol. Pain, 3, 40.
- 443) Chen, J. et al. (2008) J. Neurosci., 8, 5063-5071.
- 444) Macpherson, L.J. et al. (2006) Mol. Cell Neurosci., 32, 335–
- 445) Stokes, A. et al. (2006) Cell Signal., 18, 1584-1594.
- 446) Kobayashi, K. et al. (2005) J. Comp. Neurol., 493, 596-606.
- 447) Obata, K. et al. (2005) J. Clin. Invest., 115, 2393–2401.
- 448) Eid, S.R. et al. (2008) Mol. Pain, 4, 48.
- 449) Qian, F. et al. (1997) Nat. Genet., 16, 179-183.
- 450) Tsiokas, L. et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 6965–6970.
- 451) Hanaoka, K. et al. (2000) Nature, 408, 990-994.
- 452) Li, X. et al. (2005) Nat. Cell Biol., 7, 1202-1212.
- 453) Li, Q. et al. (2003) J. Mol. Biol., 325, 949-962.
- 454) Li, O. et al. (2003) Biochemistry, 42, 450-457.
- 455) Li, Q. et al. (2005) Hum. Mol. Genet., 14, 1587-1603.
- 456) Gallagher, A.R. et al. (2000) *Proc. Natl. Acad. Sci. USA*, 97, 4017–4022.
- 457) Rundle, D.R. et al. (2004) J. Biol. Chem., 279, 29728–29739.
- 458) Li, Y. et al. (2005) J. Biol. Chem., 280, 41298-41306.
- 459) Feng, S. et al. (2008) J. Biol. Chem., 283, 28471-28479.
- 460) Luo, Y. et al. (2003) Mol. Cell. Biol., 23, 2600-2607.
- 461) Mochizuki, T. et al. (1996) Science, 272, 1339-1342.
- 462) Pei, Y. et al. (1999) J. Am. Soc. Nephrol., 10, 1524–1529. 463) Li, Q. et al. (2003) Biochemistry, 42, 7618–7625.
- 464) Chen, X.Z. et al. (1999) Nature, 401, 383-386.
- 465) Sutton, K.A. et al. (2006) J. Cell Physiol., 209, 493-500.

- 466) Liu, Y. et al. (2002) FEBS Lett., 525, 71-76.
- 467) Li, Q. et al. (2002) FEBS Lett., 516, 270-278.
- 468) Dai, X.Q. et al. (2006) Biochim. Biophys. Acta, 1758, 197-
- 469) Basora, N. et al. (2002) J. Am. Soc. Nephrol., 13, 293-301.
- 470) Venugopal, B. et al. (2007) Am. J. Hum. Genet., 81, 1070-
- 471) Manzoni, M. et al. (2004) FEBS Lett., 567, 219-224.
- 472) Vergarajauregui, S. et al. (2006) Traffic, 7, 337-353.
- 473) Pryor, P.R. et al. (2006) Traffic, 7, 1388-1398.
- 474) Miedel, M.T. et al. (2006) J. Biol. Chem., 281, 12751-12759.
- 475) Vergarajauregui, S. et al. (2008) Biochem. J., 410, 417-425.
- 476) Venkatachalam, K. et al. (2006) J. Biol. Chem., 281, 17517-17527.
- 477) Goldin, E. et al. (2008) Invest. Ophthalmol. Vis. Sci., 49, 3134-3142.
- 478) Fares, H. et al. (2001) Nat. Genet., 28, 64-68.
- 479) Schaheen, L. et al. (2006) Dev. Biol., 293, 382-391.
- 480) Treusch, S. et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 4483-4488.
- 481) Jennings, J.J. et al. (2006) J. Biol. Chem., 281, 39041-39050.
- 482) Schaheen, L. et al. (2006) Development, 133, 3939–3948.
- 483) Lindvall, J.M. et al. (2005) Cell Immunol., 235, 46–55.
- 484) Karacsonyi, C. et al. (2007) Traffic, 8, 1404–1414.
- 485) Cuajungco, M.P. et al. (2008) Pflugers Arch., 457, 463-473.
- 486) Jeske, N.A. et al. (2008) Pain, 138, 604-616.
- 487) Kwon, Y. et al. (2007) Mol. Cell, 25, 491-503.
- 488) Hellwig, N. et al. (2005) J. Cell Sci., 118, 917-928.
- 489) Liapi, A. et al. (2005) Eur. J. Neurosci., 22, 825-834.
- 490) Lukacs, V. et al. (2007) J. Neurosci., 27, 7070-7080.
- 491) Premkumar, L.S. et al. (2000) Nature, 408, 985-990.
- 492) Vellani, V. et al. (2001) J. Physiol., 534, 813–825.
- 493) Zhang, N. et al. (2005) Proc. Natl. Acad. Sci. USA, 102, 4536-4541.
- 494) Dai, Y. et al. (2004) J. Neurosci., 24, 4293-4299.
- 495) Zhu, W. et al. (2007) Mol. Cell Neurosci., 34, 689-700.
- 496) Zhuang, Z.Y. et al. (2004) J. Neurosci., 24, 8300-8309.
- 497) Ji, R.R. et al. (2002) Neuron, 36, 57-68.
- 498) Tominaga, M. et al. (2001) Proc. Natl. Acad. Sci. USA, 98, 6951-6956.
- 499) Kwak, J. et al. (2000) J. Neurosci., 20, 8298-8304.
- 500) Zygmunt, P.M. et al. (1999) *Nature*, 400, 452–457.
- 501) Salazar, H. et al. (2008) Nat. Neurosci., 11, 255-261.
- 502) Siemens, J. et al. (2006) *Nature*, 444, 208–212.
- 503) Hwang, S.W. et al. (2000) Proc. Natl. Acad. Sci. USA, 97, 6155-6160.
- 504) Ahern, G.P. (2003) J. Biol. Chem., 278, 30429-30434.
- 505) Wang, X. et al. (2005) J. Physiol., 564, 541–547.
- 506) Trevisani, M. et al. (2002) Nat. Neurosci., 5, 546–551.
- 507) Rohacs, T. et al. (2008) Mol. Neurobiol., 37, 153-163.
- 508) Valenzano, K.J. et al. (2003) J. Pharmacol. Exp. Ther., 306, 377-386.
- 509) McIntyre, P. et al. (2001) Br. J. Pharmacol., 132, 1084-1094
- 510) Wahl, P. et al. (2001) Mol. Pharmacol., 59, 9-15.
- 511) Hayes, P. et al. (2000) Pain, 88, 205-215.
- 512) Birder, L.A. et al. (2001) Proc. Natl. Acad. Sci. USA, 98, 13396-13401.
- 513) Marsch, R. et al. (2007) J. Neurosci., 27, 832-839.
- 514) Vaishnava, P. et al. (2003) Curr. Med. Chem. Cardiovasc. Hematol. Agents, 1, 177-188.
- 515) Wang, D.H. (2005) Acta Pharmacol. Sin., 26, 286-294.

- 516) Birder, L.A. et al. (2002) Nat. Neurosci., 5, 856-860.
- 517) Marinelli, S. et al. (2002) J. Physiol., 543, 531-540.
- 518) Nathan, J.D. et al. (2002) Am. J. Physiol. Gastrointest. Liver Physiol., 283, G938-946.
- Agopyan, N. et al. (2003) Toxicol. Appl. Pharmacol., 192, 519)
- 520) Apostolidis, A. et al. (2005) *Urology*, **65**, 400–405.
- 521) Apostolidis, A.N. et al. (2004) BJU Int., 93, 336–340.
- 522) Brady, C.M. et al. (2004) BJU Int., 93, 770–776.
- 523) Ghilardi, J.R. et al. (2005) J. Neurosci., 25, 3126–3131.
- 524) Geppetti, P. et al. (2004) Br. J. Pharmacol., 141, 1313-1320.
- 525) Yiangou, Y. et al. (2001) Lancet, 357, 1338-1339.
- Nathan, J.D. et al. (2001) Am. J. Physiol. Gastrointest. Liver Physiol., 281, G1322-1328.
- Tympanidis, P. et al. (2004) Eur. J. Pain, 8, 129–133.
- 528) Dinis, P. et al. (2004) BJU Int., 94, 153–157.
- 529) Sculptoreanu, A. et al. (2005) Neurosci. Lett., 381, 42-46.
- 530) Fernihough, J. et al. (2005) Neurosci. Lett., 388, 75-80.
- 531) Szabó, A. et al. (2005) J. Pharmacol. Exp. Ther., 314, 111-
- 532) Schultz, H.D. (2003) J. Physiol., 551, 400.
- 533) Wang, L. et al. (2005) Circulation, 112, 3617–3623.
- 534) Bolli, R. et al. (2005) Circulation, 112, 3541–3543.
- 535) Neeper, M.P. et al. (2007) J. Biol. Chem., 282, 15894–15902.
- 536) Penna, A. et al. (2006) Cell Calcium, 39, 495-507.
- 537) Kanzaki, M. et al. (1999) Nat. Cell Biol., 1, 165-170.
- 538) Boels, K. et al. (2001) J. Cell Sci., 114, 3599-3606.
- 539) Iwata, Y. et al. (2003) J. Cell Biol., 161, 957-967.
- 540) Juvin, V. et al. (2007) Mol. Pharmacol., 72, 1258-1268.
- 541) Leffler, A. et al. (2007) Eur. J. Neurosci., 26, 12–22.
- 542) Shimosato, G. et al. (2005) Pain, 119, 225-232.
- 543) Hu, H.Z. et al. (2006) J. Cell Physiol., 208, 201-212. 544) Gopinath, P. et al. (2005) BMC Womens Health, 5, 2,
- 545) Mizuno, A. et al. (2003) Am. J. Physiol. Cell Physiol., 285, C96-101.
- 546) Cuajungco, M.P. et al. (2006) J. Biol. Chem., 281, 18753-
- 547) Liu, X. et al. (2006) J. Biol. Chem., 281, 15485–15495.
- 548) Earley, S. et al. (2005) Circ. Res., 97, 1270-1279.
- 549) Garcia-Elias, A. et al. (2008) J. Biol. Chem., 283, 31284-31288.
- Watanabe, H. et al. (2002) J. Biol. Chem., 277, 47044-550)
- 551) Voets, T. et al. (2002) J. Biol. Chem., 277, 33704–33710.
- 552) Grant, A.D. et al. (2007) J. Physiol., 578, 715-733.
- 553) Wegierski, T. et al. (2009) J. Biol. Chem., 284, 2923-2933.
- 554) Fu, Y. et al. (2006) Am. J. Physiol. Renal Physiol., 290, F1305-1314.
- 555) Watanabe, H. et al. (2003) *Nature*, 424, 434–438.
- Watanabe, H. et al. (2002) J. Biol. Chem., 277, 13569-13577.
- 557) Xu, F. et al. (2003) Br. J. Pharmacol., 140, 413-421.
- 558) Smith, P.L. et al. (2006) J. Biol. Chem., 281, 29897-29904.
- 559) Delany, N.S. et al. (2001) Physiol. Genomics, 4, 165-174.
- 560) Todaka, H. et al. (2004) J. Biol. Chem., 279, 35133-35138.
- 561) Lee, H. et al. (2005) J. Neurosci., 25, 1304-1310.
- 562) Suzuki, M. et al. (2003) J. Biol. Chem., 278, 22664-22668.
- 563) Alessandri-Haber, N. et al. (2006) J. Neurosci., 26, 3864-
- 564) Tabuchi, K. et al. (2005) Neurosci. Lett., 382, 304-308.
- 565) Shibasaki, K. et al. (2007) J. Neurosci., 27, 1566–1575.
- 566) Jia, Y. et al. (2004) Am. J. Physiol. Lung Cell Mol. Physiol.,

- 287, L272-278.
- 567) Liedtke, W. et al. (2004) Am. J. Physiol. Lung Cell Mol. Physiol., 287, L269–271.
- 568) Greene, C.C. et al. (2001) Am. J. Hum. Genet., 68, 254-260.
- 569) van de Graaf, S.F. et al. (2003) EMBO J., 22, 1478-1487.
- 570) Palmada, M. et al. (2005) Cell Physiol. Biochem., 15, 175– 182
- 571) Gkika, D. et al. (2006) J. Am. Soc. Nephrol., 17, 3020-3027.
- 572) van de Graaf, S.F. et al. (2006) Mol. Cell. Biol., 26, 303-312
- 573) van de Graaf, S.F. et al. (2006) *Pflugers Arch.*, 452, 407–417.
- 574) Erler, I. et al. (2004) J. Biol. Chem., 279, 34456-34463.
- 575) Chang, Q. et al. (2004) J. Biol. Chem., 279, 54304-54311.
- 576) Gkika, D. et al. (2006) EMBO J., 25, 4707-4716.
- 577) Hoenderop, J.G. et al. (2003) EMBO J., 22, 776-785.
- 578) Chang, Q. et al. (2005) Science, 310, 490-493.
- 579) Voets, T. et al. (2001) J. Biol. Chem., 276, 47767-47770.
- 580) Voets, T. et al. (2003) J. Gen. Physiol., 121, 245-260.
- 581) Vennekens, R. et al. (2001) Pflugers Arch., 442, 237-242.
- 582) Nilius, B. et al. (2001) Br. J. Pharmacol., 134, 453-462.
- 583) Müller, D. et al. (2000) Genomics, 67, 48-53.
- 584) Weber, K. et al. (2001) Biochem. Biophys. Res. Commun., 289, 1287–1294.
- 585) van der Eerden, B.C. et al. (2005) *Proc. Natl. Acad. Sci. USA*, **102**, 17507–17512.
- 586) Peng, J.B. et al. (2000) J. Biol. Chem., 275, 28186–28194.

587) van Abel, M. et al. (2006) Am. J. Physiol. Renal. Physiol., 291, F1177–1183.

- 588) Müller, D. et al. (2002) J.M. Bindels. R. Nephrol. Dial. Transplant, 17, 1614–1620.
- 589) Bianco, S.D. et al. (2007) *J. Bone Miner Res.*, 22, 274–285.
- 590) Niemeyer, B.A. et al. (2001) *Proc. Natl. Acad. Sci. USA*, 98, 3600–3605.
- 591) Kim, H.J. et al. (2007) Biochem. Biophys. Res. Commun., 361, 433–438.
- 592) Schindl, R. et al. (2002) J. Biol. Chem., 277, 26950–26958.
- 593) Thyagarajan, B. et al. (2008) J. Biol. Chem., 283, 14980– 14987
- 594) Hoenderop, J.G. et al. (2001) J. Physiol., 537, 747-761.
- 595) Peng, J.B. et al. (2000) Biochem. Biophys. Res. Commun., 278, 326–332.
- 596) Peng, J.B. et al. (1999) J. Biol. Chem., 274, 22739–22746.
- 597) Hirnet, D. et al. (2003) Cell Calcium, 33, 509-518.
- 598) Wissenbach, U. et al. (2001) J. Biol. Chem., 276, 19461–19468.
- 599) Zhuang, L. et al. (2002) Lab. Invest., 82, 1755-1764.
- 600) Peng, J.B. et al. (2001) Biochem. Biophys. Res. Commun., 282, 729–734.
- 601) Peng, J.B. et al. (2001) Genomics, 76, 99–109.
- 602) Kiselyov, K.I. et al. (2000) Mol. Cell, 6, 421-431.
- 603) Agopyan, N. et al. (2004) Am. J. Physiol. Lung Cell Mol. Physiol., 286, L563–572.