全立体構造決定から切り開く謎の巨大粒子 ボルトの機能解明

1. はじめに

1986年、米国 UCLA の L.H. Rome らの研究グループは、 被覆小胞に結合する巨大な粒子を発見し、その形が教会な どに見られるアーチ形天井に似ていることからボルト (vault) と名付けた¹⁾. 粒子の発見から 20 年以上もの間, 多くの研究者達が本粒子の機能解明に向けた研究に取り組 み,様々な可能性が探られてきたが,どれも本質的な機能 と言えるものではなく、ボルトの機能解析は長年に渡り停 滞気味であった.我々が本研究を開始した 2002 年の時点 でも本質的な機能は明確ではなかったが、これだけ大きな 粒子が生体内に無意味に存在している訳はなく、本粒子の 全体構造決定を機能解明への突破口にしたいと考え、ボル ト粒子全体のX線結晶構造解析に着手した. このような タンパク質複合体の機能解明に立体構造情報から迫る場 合,ドメインに分けるなどして断片的な構造情報を得る方 が容易でリスクも低いため、現在の主流ではあるが、「生 体内に存在するそのままの形を見ることが機能解明への一 番の近道である。|と考え、粒子の全体構造決定にこだわっ て研究を進めた.そして、研究開始から約6年の歳月を要 したが、2008年8月に3.5 Å分解能でボルト外殻の全立 体構造を決定することに成功した². 粒子の全体構造は, これまでのタンパク質にはない非常に特徴的な形をしてお り、生物が造り上げた芸術作品とも言えるものであった。 本稿では、ボルトの構造決定までの道のりと構造から見え てきた機能解明に繋がる興味深い事実について述べる.

2. ボルトとは

ラット肝臓より単離されたボルトは3種類のタンパク質 (major vault protein (MVP), vault poly (ADP-ribose) polymerase (VPARP), telomerase-associated protein 1 (TEP1)) と 1種類の非翻訳 RNA (141塩基) によって構成されてお 0^{3-6} , 分子量約1,000万でサイズが約400Å×400Å× 700Åという,細胞質内で最大の分子量を持つ核酸-タン パク質複合体である.ボルトのクライオ電子顕微鏡モデル は,樽状の形を示し,その形からキャップ,ショルダー, ボディーという三つのドメインに分けることができる(図 1).ボルトは,ヒト,ウシ,ラットなどの高等生物の他

図1 ラット肝臓由来ボルトのクライオ電子顕微鏡モデル 粒子長軸が約700Å, 胴体部分の最大径は約400Åである. 粒 子はその形から, キャップ, ショルダー, ボディーと呼ばれる 三つのドメインに分けることができる. 粒子中央部の少しへこ んだ部分はウェストと呼ばれる.

に、ゼブラフィッシュ、エイ、粘菌、ムラサキイガイ、原 虫、腸球菌、ウシガエルなどの両生類、鳥類など幅広い真 核生物種に存在することが分かっている.しかし、同じ真 核生物でも出芽酵母、分裂酵母には存在せず、大腸菌等の 原核生物にも存在しないことが知られている.本粒子は、 そのほとんどが細胞質に存在しているが、ごく一部が核膜 周辺に存在するという報告もあり、1990年代は核-細胞質 間物質輸送や多剤耐性がん細胞における抗がん剤の核外排 出への関与を示す報告が大半であった^{7~9)}.しかし、2000 年代に入り、細胞内シグナリングへの関与など新たな報告 が目立つようになってきた^{10~12)}.そして、2007年には自然 免疫反応への関与を示す報告があり、現在ではこの説が有 力であると考えられる¹³⁾.

3. ボルトの結晶化と回折強度データ収集

ボルトの試料調製は粒子の発見者である L.H. Rome 教 授らの方法を用い,3段階の密度勾配遠心分離によって調 製した.2kgのラット肝臓から約8mgの高純度な試料を 得ることができた.最初の微結晶は,研究を開始して間も なく得られ,結晶化条件の最適化を行うことにより,2002 年12月には非常にきれいな単結晶を得ることに成功した. この結晶を用い,SPring-8の生体超分子構造解析ビームラ インBL44XUにおいて,初めての回折像を得た.しかし, 得られた回折強度データの分解能は非常に低く,15Å分 解能程度であった.一般的に生体超分子複合体の結晶は回 折強度が非常に弱いのだが,回折強度は結晶のサイズに比 例するのでより大きく質の高い結晶を得るために結晶化条

みにれびゆう

件のスクリーニングを行った.研究開始から約5年間,試行錯誤を繰り返して6種類の結晶を得た.そのうちの一つである空間群 C2の結晶は,凍結条件を最適化することで、3.5 Å分解能以上の回折点を示す良質の結晶であった.

放射光での回折実験では,液体窒素の気流を用いて結晶 を100 K まで冷却し、X 線照射によるダメージをできる限 り軽減しながら回折強度データを収集するのが現在の主流 である.この際、結晶には予め抗凍結剤を浸透させてお き、結晶中の水が凍結して結晶が壊れてしまうのを防ぐ. 抗凍結剤としては、グリセロールやエチレングリコール、 様々な分子量のポリエチレングリコール (PEG) などに加 えて糖類、オイルなど様々な種類があるが、これらを全て 試してボルトの結晶に最適な抗凍結剤を探した. その結 果、34%(v/v)PEG400 が最適な抗凍結剤であることが分 かったのだが、急激な抗凍結剤濃度の上昇による結晶への 物理的なダメージを極力減らすために PEG400 の濃度を5 分おきに1%(v/v)ずつ上昇させることにした.また,結 品を最終濃度の抗凍結剤中に一晩浸透することで、

脱水に よる結晶の質の改善と結晶間の同型性を高めることにも成 功した.この手法の確立により、高分解能の回折強度デー タ収集は飛躍的に進み、39個の同型性のある結晶を用い て 3.5 Å分解能の回折強度データを収集することに成功し た.

4. ボルトの回転対称の決定と構造決定

ボルトの構造解析は、クライオ電子顕微鏡モデルを初期 モデルとして用いた分子置換法と粒子長軸方向の対称性を 用いた電子密度の平均化によって進めた. ボルトの発見者 である L.H. Rome 教授らが、電子顕微鏡により花のよう に開いた状態のボルトを観察して花弁の数を8枚と数えて 以来、ボルトは長軸方向に8回回転対称を持つというのが 定説となっていた。彼らは2002年にクライオ電子顕微鏡 による実験でボルトは48回回転対称を持つ(半分のボル トは 48 個の MVP から成ることを意味する. すなわち, 1 枚の花弁は6個の MVP から成るということである.)と し、ボルト粒子外殻は全部で96個のMVPで構成される と報告した.よって、我々も電子密度の平均化を行う際に は、粒子長軸に8回、48回回転対称を仮定して構造解析 を進めた、しかし、得られた電子密度は不明瞭で、とても モデル構築できるものではなかった.したがって,独自の 方法で粒子の回転対称を決定する必要を感じた.

我々は粒子の長軸方向に 2~48 回まで全ての回転対称を 仮定して電子密度の平均化を行い, 30 Å分解能から 10 Å

分解能まで位相拡張した.そして,観測された構造因子 F_{obs} ($I = |F_{obs}|^2$:構造因子 F_{obs} は原子配置に直接関係した 量である.結晶による X線回折強度 Iの測定により絶対 値 | Fobs | (構造振幅と呼ばれる)が得られ,分子置換法や 重原子同型置換法などの手法により位相を決定すること で、構造因子 Fats が求まる、Fats のフーリエ変換により電 子密度が得られる.)と結晶格子内に配置したクライオ電 子顕微鏡モデルを各回転対称で平均した電子密度から計算 された構造因子 Fale (電子密度を逆フーリエ変換すると F_{calc} が求まる.)との間の R 因子 ($\Sigma ||F_{obs}| - |F_{calc}|| / \Sigma |F_{obs}|$: R因子は、 $|F_{obs}|$ と $|F_{calc}|$ のずれを表す.)と相関係数 $(\Sigma(|F_{obs}| - \langle |F_{obs}|\rangle) (|F_{calc}| - \langle |F_{calc}|\rangle) / [\Sigma(|F_{obs}| - \langle |F_{calc}|\rangle)]$ $\langle |F_{obs}| \rangle ^{2} \Sigma (|F_{calc}| - \langle |F_{calc}| \rangle)^{2}]^{1/2})$ を比較した.正しい回 転対称では、他に比べて R 因子は小さくなり、相関係数 は大きくなるはずである. その結果は非常に明瞭で、この 手法による回転対称の探索により、ボルトが3,13,39回 回転対称を持つことをはっきりと証明することができ た¹⁴⁾. ボルトの外殻は、39 個の MVP が集まってできたお 椀型の半分のボルト二つがN末端同士で会合することに より、全部で78個のMVPで構成されることが明らかに なった(図2). MVP は非常に特徴的な縦長の構造をして おり、九つの繰り返し構造とショルダー、キャップへリッ クス、キャップリングの計12個の構造ドメインから形成 されていた.

393

図2 ボルト外殻の全体構造と MVP モノマーの構造 ボルト外殻は 78 個の MVP によって形成されている.縦長の特 徴的な形を持つ MVP が 39 個集まってお椀型の半分のボルトを 形成し,それらが N 末端同士で 2 回対称の関係で会合すること で鳥かご状の構造が形成されている (左図). MVP モノマーは 九つの繰り返し構造とショルダー,キャップへリックス, キャップリングの計 12 個の構造ドメインで形成される(右図). 図中の矢印はショルダードメインを示している.

図3 MVP ショルダードメインと SPFH ドメインの構造比較 MVP のショルダードメインは、アミノ酸相同性が低いにもか かわらず脂質ラフトへの結合に重要な SPFH ドメインと類似の 構造を持つ (PhSto^{CD}: core domain of stomatin from *Pyrococcus horikoshii* (PDB 3BK6), Flot^{BD7}: flotillin-2 band-7 domain (PDB 1WIN))

5. ボルトの構造情報から見えてきたこと

我々は、得られた MVPの各ドメイン構造について、 DALI サーバー¹⁵⁾を用いた構造類似性の検索を行った。そ の結果、ショルダードメインは、脂質ラフトへの結合に重 要であるとされる SPFH (stomatin/prohibitin/flotillin/HflK/ C) ドメインと類似の構造を持つことが明らかになり(図 3)、立体構造情報からボルトが脂質ラフトに結合する可能 性が示された.この結果は、ボルトが自然免疫に関与する とする M.P. Kowalski らの報告とも一致している¹³⁾.彼ら は、肺上皮細胞に緑膿菌 (Pseudomonas aeruginosa) が感 染する際、ボルトが脂質ラフトに集まることで、自然免疫 による抵抗性が高まることを報告している.また,このボ ルトの集合は脂質ラフトに存在する Cl⁻チャネルの嚢胞性 線維症膜コンダクタンス制御因子 (CFTR: cystic fibrosis transmembrane conductance regulator) & P. aeruginosa & O結合によって調節されることも示している. このように, これまで散漫気味であったボルトの機能解明において、生 化学的,構造生物学的アプローチの両面から一つのしっか りとした方向性を示せたことは非常に意義深い.

6. おわりに

幅広い真核生物が持つボルトは,粒子の発見から20年 以上もの間,謎に満ちた細胞内小器官であった.我々は, 分子量が1,000万を超えるボルトを生体内に存在するその ままの状態で結晶化することに成功し,粒子の全体構造決 定を目指した研究を進めた.構造決定においては,独自の 方法による粒子の正確な回転対称の決定が大きなブレイク スルーになった.我々が3.5Å分解能で決定した粒子外殻 の全体構造からボルトの脂質ラフトへの結合の可能性を示 すことができた.この結果は、ボルトの自然免疫反応への 関与を示す M.P. Kowalski らの報告とも一致しており、立 体構造情報からボルトの機能解明に向けた一つの方向性を 示すことができた.今後は、まだ構造決定できていないマ イナー成分 (VPARP, TEP1, vRNA)を含んだ完全なボ ルトの全体構造をより高分解能で構造決定することで、謎 の巨大粒子ボルトの機能解明への道を大きく切り開き、生 化学的、分子生物学的アプローチで検証実験を行って、世 界に先駆けたボルトの機能解明に繋げていきたい.

謝辞

本研究は元大阪大学蛋白質研究所・教授,月原富武先生 (現 兵庫県立大学ピコバイオロジー研究所教授)の指導 のもと,多くの方々と共に進めてきました.位相決定に重 要であった電子顕微鏡の単粒子解析においては,大阪大学 蛋白質研究所の岩崎憲治准教授,SPring-8の生体超分子専 用ビームラインBL44XUにおけるデータ収集や構造解析 においては,吉村政人博士(現 SPring-8・台湾ビームラ イン)に大変お世話になりました.また,プログラム Lafireを用いたモデル構築と構造の精密化におきまして は,北海道大学理学部の姚閎准教授と周勇博士に大変お世 話になりました.この場をお借りしまして御礼申し上げま す.

- Kedersha, N.L. & Rome, L.H. (1986) J. Cell Biol., 103, 699– 709.
- Tanaka, H., Kato, K., Yamashita, E., Sumizawa, T., Zhou, Y., Yao, M., Iwasaki, K., Yoshimura, M., & Tsukihara. T. (2009) *Science*, 323, 384–388.
- Stephen, A.G., Raval-Fernandes, S., Huynh, T., Torres, M., Kickhoefer, V.A., & Rome, L.H. (2001) J. Biol. Chem., 276, 23217–23220.
- Kickhoefer, V.A., Siva, A.C., Kedersha, N.L., Inman, E.M., Ruland, C., Streuli, M., & Rome, L.H. (1999) *J. Cell Biol.*, 146, 917–928.
- Kickhoefer, V.A., Stephen, A.G., Harrington, L., Robinson, M. O., & Rome, L.H. (1999) J. Biol. Chem., 274, 32712–32717.
- Kickhoefer, V.A., Searles, R.P., Kedersha, N.L., Garber, M.E., Johnson, D.L., & Rome L.H. (1993) J. Biol. Chem., 268, 7868–7873.
- Scheffer, G.L., Wijngaard, P.L., Flens, M.J., Izquierdo, M.A., Slovak, M.L., Pinedo, H.M., Meijer, C.J., Clevers, H.C., & Scheper, R.J. (1995) *Nature Med.*, 1, 578–582.

みにれびゆう

- Scheffer, G.L., Schroeijers, A.B., Izquierdo, M.A., Wiemer, E. A., & Scheper, R.J. (2000) Curr. Opin. Oncol., 12, 550–556.
- Gopinath, S.C., Matsugami, A., Katahira, M., & Kumar, P.K. (2005) Nucleic Acids Res., 33, 4874–4881.
- 10) Yu, Z., Fotouhi-Ardakani, N., Wu, L., Maoui, M., Wang, S., Banville, D., & Shen, S.H. (2002) *J. Biol. Chem.*, 277, 40247– 40252.
- 11) Kolli, S., Zito, C.I., Mossink, M.H., Wiemer, E.A., & Bennett, A.M. (2004) J. Biol. Chem., 279, 29374–29385.
- 12) Kim, E., Lee, S., Mian, M.F., Yun, S.U., Song, M.K., Yi, S., Ryu, S.H., & Suh, P.G. (2006) *FEBS J.*, **273**, 793–804.
- 13) Kowalski, M.P., Dubouix-Bourandy, A., Bajmoczi, M., Golan, D.E., Zaidi, T., Coutinho-Sledge, Y.S., Gygi, M.P., Gygi, S.P., Wiemer, E.A., & Pier, G.B. (2007) Science, 317 130–132.
- 14) Kato, K, Tanaka, H., Sumizawa, T., Yoshimura, M., Yamashita, E., Iwasaki, K., & Tsukihara, T. (2008) Acta Crystallogr. D Biol. Crystallogr., 64, 525–531.
- 15) Holm, L. & Sander, C. (1996) Science, 273, 595-603.
- 田中 秀明^{1,2},加藤 公児³,住澤 知之⁴,山下 栄樹¹
 (¹大阪大学蛋白質研究所,
 ²科学技術振興機構・さきがけ,
 ³兵庫県立大学生命理学研究科,
 ⁴ 鹿児島女子短期大学生活科学科)

Elucidation of the function based on the whole structure of rat liver vault, the largest ribonucleo-protein particle Hideaki Tanaka^{1.2}, Koji Kato³, Tomoyuki Sumizawa⁴ and Eiki Yamashita¹ (¹Institute for Protein Research, Osaka University, 3–2 Yamada-Oka, Suita, Osaka 565–0871, Japan, ²PRESTO, Japan Science and Technology Agency (JST), 4– 1–8 Honcho Kawaguchi, Saitama 332–0012, Japan, ³Department of Life Science, University of Hyogo, 3–2–1 Koto, Kamighori, Akoh, Hyogo 678–1297, Japan, ⁴Kagoshima Women's Junior College, 6–9 Kourai, Kagoshima 890–8565, Japan)

シナプスタグ仮説の実証

1. 記憶の分子機構研究の目標

我々が何かを体験する際に受け取るあらゆる感覚情報 は、各受容器で電気信号に変換された後、シナプス伝達を 介して神経細胞を次々と伝えられる.経験の認知は脳での このような神経活動なので、その追認可能な形態である記 憶も神経回路活動である. Hebb は、一定の感覚情報が特 定の神経細胞群からなる回路を伝わりやすくなる結果、経 験に対応する神経回路ができると考えた.更に、その仕組 みとして神経回路の使用によりシナプス伝達効率が変わる と予想した¹¹. その後の電気生理学的研究により,確かに シナプス伝達効率は一定ではなく,経験の頻度,強度,情 動などに依存して変化し,その変化が維持されることが分 かった. この性質をシナプス伝達の可塑性といい,記憶な どの高次脳機能を担う神経回路形成の基本原理と考えられ ている.

シナプス伝達可塑性は初期及び後期可塑性に分類され, それぞれ短期と長期記憶に対応する.変化が増加のとき長 期増強,減少なら長期抑圧と呼ばれ,記憶の性質を神経回 路の性質を介して説明することを目標に分子機構の研究が 盛んである.長期記憶が一生涯保持されることは記憶の目 覚ましい特徴の一つであり,人が人として生きるために不 可欠であるが,物質としての脳が常に代謝を受けているこ とを考えると驚異的である.後期可塑性の仕組み解明によ り,長期記憶の保持と想起の仕組み,他の記憶との連合に よる変化等の記憶の謎を解き,記憶障害に対する対抗手段 を得ることができるだろう.

シナプス可塑性の分子機構を理解するには表現機構と入 力特異性機構を明らかにする必要がある. げっ歯類海馬 CA1 野錐体細胞と Schaffer 側枝のシナプス伝達の長期増強 を例に解説しよう.表現機構とは可塑的変化の実体と局在 (シナプスのどこで何が起きたか)のことで、シナプス後 膜上のグルタミン酸受容体の一種である 2-amino-3-(5methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) 受 容体の表面発現増加が初期可塑性の主要な表現機構であ る.一方、シナプス可塑性を起こす時に活動したシナプス でのみ可塑性が起きる性質を入力特異性という. 一つの神 経細胞には数千から数万のシナプスがあるので,入力特異 性は可塑性を起こすシナプスを限定する仕組みである.初 期可塑性につながる一連の反応は、シナプス前後の同時活 動により起きる同時検出反応で始まる.例えば,Nmethyl-D-aspartic acid (NMDA) 受容体チャンネルは脱分 極時にのみ Ca²⁺イオンを通す性質がある.このため、シ ナプス後細胞の脱分極時にシナプス前から放出されたグル タミン酸が起こす NMDA 受容体依存性 Ca²⁺流入は同時検 出機構であり、この下流の反応で初期可塑性が起きるの で、入力特異性機構として働く. 各シナプスには異なる情 報が運ばれてくるので、入力特異性機構は経験が含む多く の情報の中から覚える記憶内容を選ぶ仕組みでもある.こ のように、初期可塑性の主要な分子機構はかなり解明され たのだが、後期可塑性の表現機構と入力特異性機構は未解 明である.