特集:タンパク質の化学構造から生物機能に迫る

基本転写因子 TFIIE の構造と TFIIH との相互作用

奥田昌彦,西村善文

真核生物の転写には RNA ポリメラーゼ II (Pol II) 以外にも5種類の基本転写因子 (TFIIB, TFIID, TFIIE, TFIIF, TFIIH) が必要である.これらの生体超分子の構造を解析 することは発生,分化,老化,がん化など基本的な生命現象を分子レベルで解明するため には不可欠である. Pol II や基本転写因子の構造と機能解析が欧米の研究者を中心に精力 的に行われ,2006年にロジャー・コーンバーグは Pol II の構造解析でノーベル賞を受賞 した.そのような中にあって我々は TFIIE の構造に関してαとβサブユニットのストイ キオメトリーの決定,各サブユニットのコアドメインの構造,TFIIE と TFIIH の相互作用 ドメイン複合体の構造など独自に先駆的な構造解析を行ってきた.その研究の一端をここ に紹介する.

1. はじめに

真核生物の転写には数多くのプロセスが必要である.転 写は生命の基本的な現象である発生・分化・老化等に必須 なので、各プロセスで様々な因子により厳密に制御されて いる.鋳型となる遺伝子は核内で安定なクロマチン構造を 形成している.クロマチンは DNA がヒストン(H2A, H2B, H3, H4) 八量体に巻きついたヌクレオソームコアを基本 構造単位とし高度に折りたたまれている.クロマチンリモ デリング因子やヒストン修飾酵素(アセチル化,メチル化, シトルリン化,リン酸化,ユビキチン化など)あるいはこ れらの脱修飾酵素が折りたたまれた遺伝子領域周辺のクロ マチンの高次構造をゆるめオープン状態にし、転写活性化 因子やメディエーターが働き,RNA ポリメラーゼ II (Pol II) と基本転写因子からなる転写装置(転写開始前複合体) をプロモーター領域にリクルートする.Pol II の活性化

横浜市立大学大学院国際総合科学研究科(〒230-0045 横浜市鶴見区末広町 1-7-29) 後,転写が開始されるが,非常に複雑で未解明な点も多い.ここでは,裸になったプロモーター DNA で形成され る転写開始前複合体 (pre-initiation complex:PIC) に焦点 を絞って話を進める.

PIC は、Pol II と五つの基本転写因子、TFIIB、TFIID、 TFIIE、TFIIF、TFIIHで構成される. ヒトの場合、Pol II は 12 個、TFIIB は 1 個、TFIID は 17 個、TFIIE は 2 個、 TFIIF は 2 個、TFIIH は 10 個のサブユニットからなる.

表1 ヒト転写因子のサブユニット構成

我 1	こ 報子因 リックノニニノ 一	
Pol II	12	
TFIIB	1	
TFIID	17	
TFIIE	2	
TFIIF	2	
TFIIH	10	
メディエ	-g- >20	

従って PIC は 44 個のポリペプチドから形成された非常に 複雑な超分子複合体である.酵母でも PIC の複雑さは基 本的には変わらない.このように複雑で巨大な生体超分子 複合体の立体構造を原子レベルで理解しようという試み は、機能研究とともに早い段階から開始され、1992年の TFIID のサブユニットである TATA 結合 タンパク 質 (TATA-binding protein:TBP)のコア構造の決定¹¹を皮切

Structural biology of a general transcription factor, TFIIE and its interaction mode with TFIIH

Masahiko Okuda and Yoshifumi Nishimura (Graduate School of Supramolecular Biology, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama 230–0045, Japan)

図2 PIC構成因子の構造決定例

(A) DNA-TBP コアドメイン-TFIIB のC 末ドメイン複合体(PDB ID:1VOL),
(B) Pol II 構造(完全12サブユニット)(PDB ID:1WCM),(C) Pol II-TFIIB 複合体(PDB ID:1R5U),(D)転写伸長中の Pol II の構造(PDB ID:1I6H).
TBP のコアドメイン,TFIIB のC 末ドメイン(TFIIBc), Pol II をリボンモデ ルで,DNA, RNA,TFIIB のN 末ドメイン(TFIIBn)を球体モデルで示し ている.図の作製には PyMOL プログラム^{STI}を使用した.

図3 ヒト基本転写因子 TFIIE のドメイン構造

これまでに決定したドメイン構造,および配列から予想される構造モチーフ.wHTH/FH;ウイングド・ヘリックス・ターン・ヘ リックス/フォークヘッド,ZF;ジンクフィンガー,HTH;ヘリックス・ターン・ヘリックス,bHLH;塩基性ヘリックス・ルー プ・ヘリックス,bHL;塩基性ヘリックス・ループ.STDEはセリン,トレオニン,アスパラギン酸,グルタミン酸に富んだ領域, Acidic は酸性アミノ酸に富んだ領域を示している.構造はリボンモデルで表示している.H;αヘリックス,S;β鎖.図の作製には MOLMOL プログラム⁵⁰を使用した.

図 4 TFIIEαAC ドメインと TFIIH p62 PH ドメインとの複合体の溶 液構造

(A) 20 個の NMR 主鎖構造の重ね合わせ(PDB ID: 2RNR), (B)エネルギー最小構造のリボンモデル表示. 図の作製には MOLMOL プログラム⁵⁸⁾を使用した.

りに、これまでに多くの立体構造情報が蓄積されてい る^{2.3)}. 2006年にノーベル化学賞を受賞したロジャー・ コーンバーグの Pol II の高分解能構造決定までの研究の歴 史⁴⁾を見ても分かるように、数々の困難を打開した多くの 研究者によって立体構造に基づいた転写開始の議論が可能 となってきた.しかしまだまだ構造情報が不足しており、 転写の原子レベルでの理解にはより一層の努力、時間、技 術革新が必要である.ここでは特に PIC の構成因子の中 の TFIIE について筆者らがこれまでに行ってきた研究を概 説する.また最近解析した TFIIE と TFIIH との相互作用構 造に関して詳しく紹介したい.

2. 基本転写因子 TFIIE

2.1 転写開始複合体 (PIC)

Pol II は自身ではプロモーターを正確に認識することも 転写を開始することもできず、五つの基本転写因子を必要 とする. 試験管内再構成転写系により TFIID の TBP が DNA のプロモーターを先ず認識し、DNA を大きく曲げる (図1,図2A). 続いて TFIIB が結合し転写開始点を規定 する. この複合体に TFIIF が結合した Pol II が加わる. さ らに、TFIIE が加わり、最後に TFIIE が TFIIH をリクルー トして PIC が完成する. これまでに DNA-TBP コアドメイ ン-TFIIB の C 末ドメインの三者複合体構造⁵, Pol II の単 独の構造や転写伸長中の構造^{6~8)}, Pol II-TFIIB 複合体構 造⁹等が決定されている(図2).これらの構造に基づいて PIC 形成前半までの構造はモデル化されている. TFIIF の 主なドメインの構造は決定されており、さらに Pol II との 複合体の構造解析も進行中である4. TFIIE は様々な酵素 活性をもつ TFIIH のリクルートや TFIIH の酵素活性の制 御,プロモーター DNA のメルティングやプロモーターク リアランスの過程に必須なタンパク質であるが、他の基本 転写因子に比べ構造解析は遅れていた.

2.2 TFIIE の構造解析の経緯

ヒト由来のTFIIEは439残基のαサブユニット (TFIIEα: 50kDa) と 291 残基の β サブユニット (TFIIEβ: 34kDa)から成る (図3). ゲルろ過クロマトグラフィーや クロスリンキングの実験から TFIIE は長らく α2B2 のヘテ ロ四量体であると考えられてきた10,11).しかしこれらの手 法では通常コンパクトな球状タンパク質を仮定して実験結 果を解釈する、サブユニットの種類を同定することはゲル 電気泳動などの分析手法やクローニングの実験から非常に 確実であるが、その構成量(ストイキオメトリー)を定量 化するのはそれほど確実ではない。当研究室でインタクト に近い条件下でのエレクトロスプレーイオン化質量分析法 や超遠心分析により、TFIIE は αβ ヘテロ二量体であるこ とを明らかにした¹²⁾. その後電子顕微鏡像からも PIC 中で ヘテロ二量体であることが確認された¹³⁾.X線小角散乱の 実験からは TFIIE は長細い棒状の分子であることが示され た¹²⁾. クロスリンキングの実験では TFIIE がもしマルチド メインが連なった細長い分子だとヘテロ二量体の可能性も あると議論していたが、ヘテロ四量体で解釈していた11.

ヒト TFIIF も分子量 74kDa の α サブユニットと分子量 30kDa の β サブユニットからなるヘテロ四量体であるとゲ ルろ過クロマトグラフィーやクロスリンキングの実験から 言われていたが^{11,14},実際はヘテロ二量体であることをや はり質量分析法により最近明らかにした¹⁵⁾.このように生 体超分子中の構成分子のストイキオメトリーに関しては, 教科書的なことでもきちんと確認する必要があり,その同 定に質量分析法が有効であることを示した.

TFIIE の立体構造を決定するために多くの研究者が結晶 化を試みてきたが、TFIIE のαβ二量体自体や各サブユ ニットも溶解性が悪く良好な結晶を得ることに未だ成功し ていない.限定分解実験や NMR の実験結果の解析から、 TFIIE は天然変性領域^{16~18)}を多く含むことが示唆されてい る.筆者らは TFIIE 中の安定なドメインを同定し、それら の構造を NMR で決定することを先ず始めた.

図5 結合前後での TFIIE αAC ドメインの構造変化

図 6 TFIIEαAC ドメインと TFIIH p62 PH ドメインとの間の特異的結合の詳細

図7 TFIIEαAC ドメインと TFIIH p62 PH ドメインとの複合体と p53 TAD2 と Tfb1 PH ドメインとの複合体の構造比較 (A) TFIIEαAC ドメイン-TFIIH p62 PH ドメイン複合体. (B) p53 TAD2-Tfb1 PH ドメイン複合体 (PDB ID: 2GS0). 相互作用してい る残基を側鎖で示している. P62/Tfb1 のポケット1を形成している残基をラベルしている. (B) では Tfb1 の残基の右に p62 の相等 残基を示している. 図の作製には MOLMOL プログラム⁵⁸を使用した.

左図は未結合時の TFIIEαAC ドメインの構造,右図は AC ドメインの構造と TFIIH p62 PH ドメインとの複合体構造. それぞれ 20 個の構造の重ね合わせ図である.未結合時で一定の構造をとっていなかった AC ドメインの両末端テール,特に N 末端テールが結合時に固定されている様子が分かる.図の作製には MOLMOL プログラム⁵⁸⁾を使用した.

⁽A) TFIIEαのACドメインのN 末酸性テールが p62のPHドメインの正の電荷(青)が広く分布した分子表面を静電的相互作用しな がら包み込んでいる様子.赤は負の電荷.(B) TFIIEαのACドメインのF387,および V390 がそれぞれ p62のPHドメインのポケッ トにはまり込んでいる様子.(C) TFIIEαのACドメインのコア部による p62のPHドメインの認識.球体モデルで表示.(A),(B) は、ACドメインをワイヤーモデルで表示し、PHドメインは分子表面を表示している.図の作製には GRASP プログラム⁵⁰,および PyMOL プログラム⁵⁷⁾を使用した.

3. TFIIE のコアドメインの構造

両サブユニットに対してプロテアーゼ限定分解実験を 行った結果,それぞれ一つずつ安定なドメイン(コアドメ イン)が同定された.興味深いことに,どちらもその領域 を欠損した変異体は基本転写に対してドミナントネガティ ブ効果を示すことから,各コアドメインは機能上非常に重 要である^{19,20)}.しかし,各コアドメインがどのような機能 を果たすかは不明であったので,構造を解析し構造に基づ いた機能解析を試みた.

3.1 TFIIEβのコアドメイン

最初に、ヒト TFIIEB のコアドメインの構造を決定した (図 3)²¹⁾. アミノ酸配列からの予想に反して、コアドメイ ンの構造は3本のヘリックスとC末におけるβターンか らなり、ウイングド・ヘリックス・ターン・ヘリックス (wHTH)/フォークヘッド (FH) ドメインとして知られる 転写因子の DP2 や HNF-3γの DNA 結合ドメインと非常に よく似ていた²¹⁾. そこで一本鎖 DNA や二本鎖 DNA との 結合実験を行ったところ TFIIEB のコアドメインは二本鎖 DNA 結合ドメインであることを確認した²¹⁾. それまで知 られていた wHTH ドメインでは3番目のヘリックスが DNA の大きな溝に結合し、ウイングが小さな溝に結合す る. しかし TFIIEB のコアドメインの DNA 結合面を NMR で調べたところ、いままで報告されてきた wHTH の結合 面とは反対の1番目のヘリックス側であった. 高次構造 (フォールド)が同じでも二本鎖 DNA 結合という機能性 表面が大きく異なっていた. これは TFIIE のアミノ酸配列 からwHTH という構造を全く予測できなかったことと対 応する.ほぼ同時期に、ヒトRFX1のwHTHは、ウイン グがDNAの大きな溝に、3番目のヘリックスがDNAの 小さな溝に結合することが報告された²²⁾. その後, TFIIEα の古細菌ホモログTFE²³や,ヒトTFIIFα²⁴のwHTHは DNA 結合能をもたないことや、ヒト TFIIFαの wHTH で は他のタンパク質との相互作用に使われるといった報告も なされている. タンパク質の高次構造を決定するアミノ酸 とタンパク質の機能を決定するアミノ酸とは異なる場合が 多いということを示している^{25~28)}.

構造と機能の多様性の例としてクロマチンリモデリング 因子 CHD1 の例もある²⁰. ヒト CHD1 と酵母 Chd1 は二つ のクロモドメインをタンデムに含みアミノ酸配列もよく似 ている.クロモドメインはヒストンのメチル化リシンを認 識するドメインとして知られている.我々は酵母 Chd1 の クロモドメインはメチル化リシンを認識しないことを実験 的に確認していたが,酵母 Chd1 のクロモドメインがメチ ル化リシンを認識するという間違った報告が出た³⁰.しか しその後酵母ではなくヒト CHD1 の二つのクロモドメイ ンがヒストン H3 のトリメチル化された4番目のリシン残 基を特異的に認識することが構造的に確認された³¹⁾.酵母 Chd1 の二つのクロモドメインの構造はヒト CHD1 の結合 部位に相当する構造が異なっていることが分かった^{29,32)}. 酵母とヒトで同じホモログであっても機能が同じとは限ら ない.機能の詳細な差異は構造を解析し機能性アミノ酸を 比較することにより解明できる.

TFIIH はそのヘリカーゼ活性により,転写開始点付近の DNA の二重らせんをほどき,転写のための泡を生成する (プロモーターメルティング).TFIIE はその領域の DNA に結合する³³⁾.構造解析から見出された TFIIEβ コアドメ インの二本鎖 DNA 結合能と C 末塩基性領域 (bHL)(図 3) の一本鎖 DNA 結合能¹⁹⁾の両方がプロモーターメルティン グに関与していると考えられる.

3.2 TFIIEαのコアドメイン

次に、TFIIEaのコアドメインの構造を決定した(図 3)³⁴⁾.四つのシステインが一つの亜鉛イオンを配位する C4 タイプの亜鉛結合ドメインであったが、いままで数多 く報告されてきたどのジンクフィンガーにも属さない新規 なフォールドであった.構造機能相関を明らかにするため に、いくつか変異体を作成した.野生型では亜鉛イオンの 配位は構造保持に必須であるが、亜鉛イオンを配位してい る C129, C132, C154, 及び C157 をそれぞれアラニンに 置換した四つの変異体の構造を円二色性(CD)や NMR で解析したところ、どれも構造は壊れていたものの亜鉛イ オンを配位し部分的にフォールドした構造とランダム構造 との平衡状態にあった³⁵⁾.興味深いことに、N末の二つの 変異体どうし、またC末の二つの変異体どうしはそれぞ れ互いに類似した特徴を示した.この構造非対称性はスー パーコイル DNA 鋳型を用いた際の転写活性にも反映され ていた³⁴⁾.変異体を用いて他の基本転写因子との相互作用 を調べたが,目立った結合の損失は認められない³⁴⁾.この ことから,他の基本転写因子との相互作用に積極的に関 わっている可能性は低いが、この部位の欠損はドミナント ネガティブである.コアドメインの表面には際だった酸性 アミノ酸の領域が存在する.これらのアミノ酸のうち164 番目のアスパラギン酸を置換すると野生型よりも転写が活 性化する変異体を得たので³⁴⁾,コアドメインは転写を負に 制御している可能性がある。今後引き続き機能を解析して 行く必要がある.

4. TFIIE と TFIIH の相互作用

4.1 **TFIIH**

前述したように, TFIIE は TFIIH をリクルートし PIC を 形成する. ヒト TFIIH は 10 個のサブユニットで構成さ れ, Pol II と同様に巨大な複合体 (480kDa) である. TFIIH はコア複合体 (XPB, p34, p44, p52, p62, p8/TTDA) と CAK (CDK activating kinase) 複合体 (Cdk7, cyclin H, MAT1) が XPD サブユニットで連結されている³⁶. TFIIH は Pol II の活性化に必要な三つの酵素活性である ATP 依存性 DNA ヘリカーゼ, DNA 依存性 ATP アーゼおよび CTD (Pol II の最大サブユニット Rpb1 の C 末ドメイン) キナーゼ活性 をもつ. このうち, TFIIE は ATP アーゼおよび CTD キ ナーゼ活性を促進し, ヘリカーゼ活性を抑制する^{37~39}. こ れらの酵素活性は, PIC 形成後のプロモーターメルティン グやプロモータークリアランス (Pol II がプロモーターか ら離れる過程) に使われる. TFIIE と TFIIH は協調しなが ら, 転写の開始段階だけでなく, 転写開始から伸長段階へ の遷移段階においても重要な役割を果たす.

4.2 TFIIEa C 末酸性(AC)ドメイン

TFIIE と TFIIH は互いに密接な関係にあるにもかかわら ず,両者の相互作用については,TFIIEαのC末側の酸性 アミノ酸残基に富んだ領域(378-395 残基)が TFIIH との 結合に重要であること²⁰⁾, TFIIEαが TFIIHの p62 サブユ ニットに強く結合すること^{34,40)}が分かっているのみで、構 造的知見は皆無であった. そこで、まず TFIIEαの酸性領 域からC末端までの領域(378-439残基,以下ACドメイ ンと呼ぶ.)が、p62のどの領域に結合するのかをp62欠 損変異体を作成し、GST プルダウンアッセイで調べた⁴¹⁾. その結果, AC ドメインは p62 の N 末に存在するプレクス トリン相同 (pleckstrin homology: PH) ドメインと特異的 に結合することが分かった. PH ドメインは構造的に安定 で、既にNMRにより構造が解かれていた42. 両者の相互 作用を構造的に検討するために TFIIEαのAC ドメインの 構造を NMR で決定した⁴¹⁾ (図 3).酸性アミノ酸残基が連 続して見られるN末端から16残基,およびC末端の5残 基は構造をとっていなかったが、それ以外の領域ではβ ターンにつづき3本のαヘリックスが互いに寄り添った コンパクトな構造を形成していた.

4.3 TFIIEαのACドメインとTFIIH p62のPHドメイ ンとの複合体構造

次に両者の複合体構造を解析した.NOE (核オーバー ハウザー効果) 由来の4,489 個の距離制限情報,120 個の 水素結合制限情報,および282 個の二面角制限情報から立 体構造を計算し,良好に収束された構造を得た(図4)⁴¹⁾. 複合体中のp62のPHドメインは,単独の構造とほぼ同じ であった.TFIIEαのACドメインも,単独の時に構造を 形成していたコアの部分は同じであったが,構造を全く とっていなかったN末の酸性残基に富んだ末端の部分が, 結合時には伸びた構造で固定され,一部分でβ鎖を形成 しながら,p62のPHドメインを広く包み込んでいた(図 5). ACドメインのN末端から9連続した酸性アミノ酸 (E378-E386)は、PH ドメインの S5、S6、S7 からなる 2 番 目のβシート(β2)上の正の電荷が広く分布した表面と 相互作用しながら横断していた(図 6A).続くF387から A391のポリペプチド鎖は、PHドメインの B2 端の S5 鎖 の横に沿って走り、PHドメインのS5,S6,S7 鎖に加え て新たな4番目の鎖(S0)として PH ドメインの β シート 形成に参加していた(図4B). ACドメインのN末テール はN端から12残基までがF387を除きすべて酸性アミノ 酸に占められており, F387 の役割については解析前から 注目していたが、やはり特異的結合に重要で、その芳香環 側鎖は PH ドメインの β2 上にある浅い1 番目のポケット (ポケット1)の中に納まっていた(図6B).またその後 の二つの酸性残基, E388, E389 に続く V390 も F387 と同 様に PH ドメインの S5 鎖と H1 ヘリックスの間にある浅 い2番目のポケット (ポケット2)にはまり込んでいた (図 6B).

注目されることに AC ドメインの N 末領域に加えて, コアの部分もまた結合に関与していた(図 6C). AC ドメ インの N 末領域のペプチドを用いた結合実験から,それ だけでも PH ドメインに結合できるが,コア部分をもつ時 と比べて約 6~9 倍弱くなることが分かった. 複合体全体 として収束よく構造が決定できたのは,N 末テールに加え てコア部の結合への寄与によるところが大きい.

5. TFIIE, TFIIH, p53のクロストーク

5.1 p53の転写活性化ドメイン(TAD2)との結合部位の 共有

がん抑制タンパク質p53の酸性転写活性化ドメイン (TAD) には TAD1 と TAD2 と呼ばれる二つの領域が存在 するが、そのうち TAD2 は出芽酵母のヒト p62 ホモログ である Tfb1 の PH ドメインと複合体を形成する (図 7)43. Tfb1のPHドメインの構造はS6とS7間のループの長さ を除き互いによく似ている. さらに、単純ヘルペスウイル ス VP16 の TAD も実質的に Tfb1 の同じ部位に結合する⁴⁴. この複合体構造と今回の複合体構造を比較してみると面白 いことに、p53のTAD2とVP16のTADのPHドメイン上 の結合部位が、TFIIEαのACドメインとの結合部位の一 部と重なり合う.しかし、結合様式は両者で全く異なる. p53のTAD2は結合していないときは天然変性状態で構造 をとらないが、結合時には9残基からなる両親媒性ヘリッ クスを形成し、PHドメインの2番目のβシートに結合す る. TFIIEαのACドメインのN末領域も同様に結合とと もに構造が誘起されるが、ヘリックスではなく SO 鎖を含 む湾曲した伸びた構造である. 但し, このような大きな構 造的相違にもかかわらず、どちらもフェニルアラニン (TFIIEαのACドメインではF387とp53のTAD2では F54) を PH ドメインのポケット1 に挿入していた. p53 の TAD2 では限られた領域でのみ PH ドメインに接触する が, TFIIE α の AC ドメインではさらに広範囲に渡って相 互作用する. 結合表面積を計算してみると, p53 の TAD2 と Tfb1 の PH ドメイン複合体が約 800Å² であるのに対し て, TFIIE α の AC ドメインと p62 の PH ドメイン複合体で は約 2, 300Å² と約 4 倍広い.

5.2 結合部位共有の生物学的意味

酸性 TAD は多くの場合,結合していない状態では一定 の構造をとらずふらついている天然変性状態であるが、標 的タンパク質に結合すると両親媒性へリックスを形成 する. 例えば、p53のTAD2とRPA70(複製タンパク質 A70)⁴⁵⁾, p53のTAD1とMDM2 (ユビキチンリガーゼ)⁴⁶⁾, VP16のTADとhTAF_n31(ヒトTBP 関連因子)⁴⁷⁾複合体が そうである.一方, TFIIEαのACドメインは, ヘリック ス構造をとらず、伸びた構造のN端テールとコア構造が 一緒になって p62 の PH ドメインに結合していた. 等温滴 定熱量測定(ITC)で見積もられた p53の TAD2の p62 や Tfb1のPHドメインに対する K_{d} はそれぞれ3,175±570 nM, 391 ± 74nM である⁴³. NMR 滴 定 実 験 で 得 ら れ た VP16のTADとTfb1のPHドメインの K_{d} は、4~7 μ Mで ある⁴⁴⁾. これらの結合と比べて、TFIIEαのACドメインと p62のPHドメインとの結合はむしろ強い.転写活性化因 子は Pol II や基本転写因子のリクルート効率を上げること によって転写開始を促進する機能が知られている48. 転写 活性化時の TFIIH のリクルートを考えてみると、TFIIH は TFIIE による経路に加えて、転写活性化因子による経路か ら PIC ヘリクルートされる. p62 は VP16 や p5349)だけで なく, E2F-1⁵⁰やエストロゲン受容体 ERα⁵¹と相互作用し, p53, VP16, ERαはp62のPHドメインを標的にする。今 回の研究では基本転写因子 TFIIEα も AC ドメインを通じ て同じp62のPHドメインと結合することが分かった. 我々の知る限り, TFIIE は TAD 様モチーフを所有するこ とが示された最初の基本転写因子である. さらに, p5343 と VP16⁴⁴⁾は、TFIIEα AC ドメインと p62の PH ドメイン との間で形成される結合表面の一部を共有していることも 明らかになった. TFIIE と TFIIH の相互作用は PIC 形成後 の次の段階, 即ち, プロモーターメルティングやプロモー タークリアランスに必要なので、p53のTAD2とのp62の PH ドメインの結合表面の共有は, TFIIH のリクルートの 完了に際し、転写活性化因子から TFIIE への TFIIH の効率 的な受け渡しに有利なると考えられる.

興味深いことに, p53のTAD2のp62のPHドメインへの結合は, p53のS46やT55のリン酸化によって制御される⁴³⁾. 非リン酸化時の K_a は3,175±570nMであるが,S46あるいはT55がリン酸化されると,それぞれ K_a が518±

92nM, 457±75nM, さらに両方がリン酸化されると97± 33nMとなり、親和性が増加する、最近報告された ITC 実 験によると, TFIIEα (336-439 残基)の p62 の PH ドメイ ンへの結合の K₄は 45 ± 25nM である⁵²⁾. これらの値を考 えると、TFIIE α336-439 の p62 の PH ドメインへの親和性は、 非リン酸化 p53の TAD2 よりもずっと強く, S46 と T55の どちらもリン酸化された p53の TAD2 と同程度となる. TFIIH と p53 は転写だけでなく、DNA 修復にも関与して おり^{38,53)}, p62 の PH ドメインはヌクレオチド除去修復にも 関与すること42)を考慮すると、p62は転写とDNA修復の 間の分子スイッチとして働いているのかもしれない. つま り, p53のTAD2が非リン酸化の時には, p53のTAD2か ら TFIIEαの AC ドメインへの p62の受け渡しが効率よく 行われ、転写開始において互いに協調しながら機能し、一 方で S46 や T55 がリン酸化された時には、p53 の TAD2 の p62のPHドメインへの親和力がTFIIEαのACドメインと 同程度になるのでむしろ, p53 と p62 (TFIIH) は転写活 性化以外の, DNA 修復や他のプロセスに働くのではない かと想像している.この説が正しいかどうかは今後の研究 に期待される.

6. 終わりに

以上述べたように、筆者らは TFIIE の構造研究をドメイ ン解剖学的に進めてきた.構造が解かれたドメインはいず れも実験的にあまり問題がなく、比較的順調に解析を進め ることができた.しかし αβ 二量体ドメインや,様々な因 子との相互作用部位が集中する TFIIEβのC 末領域といっ た重要領域が残っている.これらの領域にこれまでにも何 度か挑戦してきたが、よい系を見出せていない. 従来の方 法ではうまくいかない領域や、天然変性領域の構造を如何 にして解析していくかが今後の課題である.NMR は X 線 結晶構造解析と異なり天然変性状態の構造や動的構造を解 析できるので^{54,55)}, TFIIE の全体構造を NMR で解析してい く手法を現在開発している.また,各々のドメインが、ど のような相対位置にあるのか、特に PIC 上でどこに位置 するのかを今後明らかにしていく必要がある.幸いにして TFIIE は DNA, Pol II, ほとんどの基本転写因子と相互作 用するので、多くの相互作用情報を得ることが期待でき る. ここで述べた TFIIEαのAC ドメインと TFIIHの p62 の PH ドメインの複合体構造決定はそのような取り組みの はじまりでもある.得られた構造情報と、電子顕微鏡 法13, クロスリンキング実験50)や変異体実験等のデータと 上手く組み合わせることによって,TFIIE の全体構造を理 解することができると考えている. このような地道な作業 が、PIC 構造の完全モデル化へ繋がるものと確信してい る.

ここで述べた筆者らの研究成果は、多くの方々のご協力 により得られたものです.TFIIEの機能解析は、大熊芳明 先生(富山大学)、TFIIEの質量分析等の成果は、明石知 子先生(横浜市立大学)、ペプチド合成については相本三 郎先生(大阪大学)との共同研究であり、厚く御礼申し上 げます.また、長土居有隆博士をはじめ横浜市立大学大学 院機能科学研究室の皆様、本研究に関わった多くの方々に 深謝いたします.また本研究は文科省の「タンパク 3000 プロジェクト:転写・翻訳(代表:西村善文)」と「ター ゲットタンパク研究プログラム:クロマチン上での基本転 写因子、転写制御因子、ヒストン修飾因子の構造生物学 (代表:西村善文)」の研究成果である.記して感謝したい.

文 献

- Nikolov, D.B., Hu, S.H., Lin, J., Gasch, A., Hoffmann, A., Horikoshi, M., Chua, N.H., Roeder, R.G., & Burley, S.K. (1992) *Nature*, 360, 40–46.
- 2) 奥田昌彦,西村善文(2002)蛋白質核酸酵素,47, 926-940.
- 3) 西村善文 (2005) 蛋白質 核酸 酵素, 50, 1247-1263.
- 4) Kornberg, R.D. (2007) Proc. Natl. Acad. Sci. USA, 104, 12955–12961.
- Nikolov, D.B., Chen, H., Halay, E.D., Usheva, A.A., Hisatake, K., Lee, D.K., Roeder, R.G., & Burley, S.K. (1995) *Nature*, 377, 119–128.
- Cramer, P., Bushnell, D.A., Fu, J., Gnatt, A.L., Maier-Davis, B., Thompson, N.E., Burgess, R.R., Edwards, A.M., David, P. R., & Kornberg, R.D. (2000) Science, 288, 640–649.
- Cramer, P., Bushnell, D.A., & Kornberg, R.D. (2001) Science, 292, 1863–1876.
- Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A., & Kornberg, R. D. (2001) Science, 292, 1876–1882.
- Bushnell, D.A., Westover, K.D., Davis, R.E., & Kornberg RD (2004) Science, 303, 983–988.
- 10) Ohkuma, Y., Sumitomo, H., Horikoshi, M., & Roeder, R. (1990) Proc. Natl. Acad. Sci. USA, 87, 9163–9167.
- 11) Forget, D., Langelier, M.F., Therien, C., Trinh, V., & Coulombe, B. (2004) Mol. Cell. Biol., 24, 1122–1131.
- 12) Itoh, Y., Unzai, S., Sato, M., Nagadoi, A., Okuda, M., Nishimura, Y., & Akashi, S. (2005) *PROTEINS: Structure, Function and Bioinformatics*, 61, 633–641.
- 13) Jawhari, A., Uhring, M., De Carlo, S., Crucifix, C., Tocchini-Valentini, G., Moras, D., Schultz, P., & Poterszman, A. (2006) *EMBO Rep.*, 7, 500–505.
- 14) Flores, O., Maldonado, E., & Reinberg, D. (1989) J. Biol. Chem., 264, 8913–8921.
- 15) Akashi, S., Nagakura, S., Yamamoto, S., Okuda, M., Ohkuma, Y., & Nishimura, Y. (2008) *Protein Sci.*, 17, 389–400.
- 16) Dyson, H.J. & Wright, P.E. (2002) Curr. Opin. Struct. Biol., 12, 54–60.
- 17)西川 建,峰崎善章,福地佐斗志(2006)蛋白質 核酸 酵素, 51, 1827-1835.
- 18) 西村善文,中村春木 (2007) 蛋白質 核酸 酵素, 52, 937-942.
- 19) Okamoto, T., Yamamoto, S., Watanabe, Y., Ohta, T., Hanaoka, F., Roeder, R.G., & Ohkuma, Y. (1998) J. Biol. Chem., 273,

19866-19876.

- 20) Ohkuma, Y., Hashimoto, S., Wang, C.K., Horikoshi, M., & Roeder, R.G. (1995) *Mol. Cell. Biol.*, 15, 4856–4866.
- Okuda, M., Watanabe, Y., Okamura, H., Hanaoka, F., Ohkuma, Y., & Nishimura, Y. (2000) *EMBO J.*, 19, 1346–1356.
- 22) Gajiwala, K.S., Chen, H., Cornille, F., Roques, B.P., Reith, W., Mach, B., & Burley, S.K. (2000) *Nature*, 403, 916–921.
- 23) Meinhart, A., Blobel, J., & Cramer, P. (2003) J. Biol. Chem., 278, 48267–48274.
- 24) Kamada, K., De Angelis, J., Roeder, R.G., & Burley, S.K. (2001) Proc. Natl. Acad. Sci. USA, 98, 3115–3120.
- 25) 西村善文(2000) 蛋白質 核酸 酵素, 45, 1683-1693.
- 26) 西村善文(2000) 実験医学, 18, 2587-2593.
- 27) 西村善文(2002) 実験医学, 20, 196-205.
- 28) 西村善文(2002) 実験医学, 20, 1988-1996.
- 29) Okuda, M., Horikoshi, M., & Nishimura, Y. (2007) J. Mol. Biol., 365, 1047–1062.
- 30) Pray-Grant, M.G., Daniel, J.A., Schieltz, D., Yates, J.R., & Grant, P.A. (2005) *Nature*, 433, 434–438.
- 31) Flanagan, J.F., Mi, L.Z., Chruszcz, M., Cymborowski, M., Clines, K.L., Kim, Y., Minor, W., Rastinejad, F., & Khorasanizadeh, S. (2005) *Nature*, 438, 1181–1185.
- 32) Flanagan, J.F., Blus, B.J., Kim, D., Clines, K.L., Rastinejad, F., & Khorasanizadeh, S. (2007) J. Mol. Biol., 369, 334–342.
- 33) Robert, F., Forget, D., Li, J., Greenblatt, J., & Coulombe, B. (1996) J. Biol. Chem., 271, 8517–8520.
- 34) Okuda, M., Tanaka, A., Arai, Y., Satoh, M., Okamura, H., Nagadoi, A., Hanaoka, F., Ohkuma, Y., & Nishimura, Y. (2004) *J. Biol. Chem.*, **279**, 51395–51403.
- 35) Okuda, M., Tanaka, A., Hanaoka, F., Ohkuma, Y., & Nishimura, Y. (2005) J. Biochem., 138, 443–449.
- 36) Schultz, P., Fribourg, S., Poterszman, A., Mallouh, V., Moras, D., & Egly, J.M. (2000) *Cell*, 102, 599–607.
- 37) Lu, H., Zawel, L., Fisher, L., Egly, J-M., & Reinberg, D. (1992) Nature, 358, 641–645.
- 38) Drapkin, R., Reardon, J.T., Ansari, A., Huang, J.C., Zawel, L., Ahn, K., Sancar, A., & Reinberg, D. (1994) *Nature*, 368, 769– 772.
- 39) Ohkuma, Y. & Roeder, R.G. (1994) Nature, 368, 160-163.
- 40) Yamamoto, S., Watanabe, Y., van der Spek, P.J., Watanabe, T., Fujimoto, H., Hanaoka, F., & Ohkuma, Y. (2001) *Mol. Cell. Biol.*, 21, 1–15.
- 41) Okuda, M., Tanaka, A., Satoh, M., Mizuta, S., Takazawa, M., Ohkuma, Y., & Nishimura, Y. (2008) *EMBO*. J., 27, 1161– 1171.
- 42) Gervais, V., Lamour, V., Jawhari, A., Frindel, F., Wasielewski, E., Dubaele, S., Egly, J.M., Thierry, J.C., Kieffer, B., & Poterszman, A. (2004) *Nat. Struct. Mol. Biol.*, 11, 616–622.
- 43) Di Lello, P., Jenkins, L.M., Jones, T.N., Nguyen, B.D., Hara, T., Yamaguchi, H., Dikeakos, J.D., Appella, E., Legault, P., & Omichinski, J.G. (2006) *Mol. Cell*, 22, 731–740.
- 44) Di Lello, P., Nguyen, B.D., Jones, T.N., Potempa, K., Kobor, M.S., Legault, P., & Omichinski, J.G. (2005) *Biochemistry*, 44, 7678–7686.
- 45) Bochkareva, E., Kaustov, L., Ayed, A., Yi, G.S., Lu, Y., Pineda-Lucena, A., Liao, J.C., Okorokov, A.L., Milner, J., Arrowsmith, C.H., & Bochkarev, A. (2005) *Proc. Natl. Acad. Sci.* USA, 102, 15412–15417.
- 46) Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., & Pavletich, N.P. (1996) *Science*, 274, 948– 953.
- 47) Uesugi, M., Nyanguile, O., Lu, H., Levine, A.J., & Verdine, G.

L. (1997) Science, 277, 1310-1313.

- 48) Ptashne, M. & Gann, A. (1997) Nature, 386, 569-577.
- 49) Xiao, H., Pearson, A., Coulombe, B., Truant, R., Zhang, S., Regier, J.L., Triezenberg, S.J., Reinberg, D., Flores, O., Ingles, C.J., & Greenblatt, J. (1994) Mol. Cell. Biol., 14, 7013–7024.
- 50) Pearson, A. & Greenblatt, J. (1997) Oncogene, 15, 2643–2658.
- 51) Chen, D., Riedl, T., Washbrook, E., Pace, P.E., Coombes, R.C., Egly, J.M., & Ali, S. (2000) Mol. Cell, 6, 127–137.
- 52) Di Lello, P., Miller Jenkins, L.M., Mas, C., Langlois, C., Malitskaya, E., Fradet-Turcotte, A., Archambault, J., Legault, P., & Omichinski, J.G. (2008) *Proc. Natl. Acad. Sci. USA*, 105, 106–111.
- 53) Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., & Craig, R.W. (1991) *Cancer Res.*, 51, 6304–6311.
- 54) 野村 充,西村善文 (2006) 蛋白質 核酸 酵素, 51, 913-920.
- 55) 西村善文 (2007) 蛋白質 核酸 酵素, 52, 966-973.
- 56) Chen, H.T., Warfield, L., & Hahn, S. (2007) Nat. Struct. Mol. Biol., 14, 696–703.
- 57) DeLano, W.L. (2002) http://www.pymol.org
- 58) Koradi, R., Billeter, M., & Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.
- 59) Nicholls, A., Sharp, K.A., & Honig, B. (1991) *PROTEINS*: *Structure, Function and Bioinformatics*, 11, 281–296.