みにれびゅう

リボソームの生合成に共役したリボソーム前駆体の品質管理機構

松尾 芳隆

1. はじめに

リボソームはタンパク質の合成装置として重要な働きを 担っており、正常なリボソームの供給は、細胞増殖や、条 件に応じた遺伝子発現にとって非常に重要である. 真核生 物のリボソームは4種類のRNAと79種類のタンパク質 からなる巨大な複合体であり、その生合成には、rRNAの 合成および修飾やプロセシング、リボソームタンパク質の 集合,正確な立体構造の形成,核から細胞質への輸送な ど,多くの過程が存在している.この複雑な生合成過程の 大部分はタンパク質合成の場である細胞質とは隔離された 核内で行われるが、その過程で生じた異常なリボソーム前 駆体は、細胞質へ輸送されることなく、核内で分解される ことが知られている.しかし、生合成過程の様々な段階で 生じる多種多様な異常リボソーム前駆体を、細胞が認識す る機構は長い間未解明のままであった.近年,いくつかの グループから、リボソームの生合成過程でのチェックポイ ント、つまりリボソーム前駆体の品質管理機構に関する報 告がなされた.本稿では、これらの報告を中心に、リボ ソームの生合成、核外輸送と品質管理機構に関する最近の 話題を紹介する.

2. リボソームの生合成

リボソームの生合成は、すべての生物にとって最もエネ ルギーを消費するイベントの一つであり、対数増殖期の出 芽酵母は1分間に約2,000ものリボソームを合成するとい われている.その仕組みは非常に複雑で、最も単純な真核 生物の一つである出芽酵母のリボソームでさえ200種類以 上の生合成因子を必要としている¹⁾.リボソームの生合成 の開始地点である核小体では、RNAポリメラーゼIに

東北大学大学院薬学研究科遺伝子制御薬学分野(〒980-8578 宮城県仙台市青葉区荒巻字青葉 6-3 C305)

Quality control of pre-ribosome coupled with ribosome biogenesis

Yoshitaka Matsuo (Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6–3, Aoba-ku, Sendai 980–8578, Japan)

よって、三つのrRNA(18S, 5.8S, 25S)を含む一つの大 きな 35S rRNA 前駆体が転写される (図1). 転写された 35S rRNA には即座に多数の核小体低分子 RNA (snoRNAs) が結合し、約100のrRNA 塩基の修飾が施され、同時に多 くのリボソームタンパク質や生合成因子も結合し、新生 35S rRNA. タンパク質. 核小体低分子 RNA からなる巨大 な 90S 前駆体が形成される¹(図 1). また, RNA ポリメ ラーゼⅢによって転写される四つ目のrRNA である 5S rRNA もこの時期に取り込まれると予想される。また、電子顕微 鏡を用いた観察から、転写された 35S rRNA の 5' 末端に球 状の構造が確認されることから²,この球状構造のものが 40S 前駆体. もしくは 40S 前駆体と 60S 前駆体を含む 90S 前駆体に相当すると考えられている. 合成された 90S 前駆 体に含まれる 35S rRNA は、20S rRNA と 27S rRNA に切断 され、それぞれ 40S 前駆体と 60S 前駆体が形成される¹⁾ (図1). なお、一定の割合で35SrRNAの転写が完了する 前にこの切断が起こることも確認されている³. 形成され た 40S 前駆体は、この時点でほとんどのリボソームタン パク質と生合成因子を含んでいるため、そのまま核外へ輸 送されると推測されており、最終的に細胞質にて成熟化が 完了する¹⁾. 一方, 60S 前駆体は, 核小体, 核質, 細胞質 へと成熟の場を移動させながら、さらなる成熟過程を経 る. 核質の 60S 前駆体と特異的に結合する Rix1 タンパク 質のアフィニティー精製で得られる 60S 前駆体 (以後 Rix1 前駆体と呼ぶ) には, AAA-ATPase である Real, GTPase で ある Nug2, WD リピートタンパク質である Rsa4 が非常に 多く含まれている⁴⁾. Real は六つの ATP 結合部位からなる リング領域と, MIDAS (metal ion dependent adhesion site) ドメインを含むテイル領域から構成され、MIDASドメインは Rsa4のN末端領域に位置する MIDO (MIDAS interacting domain) ドメインと相互作用する⁴(図 1). また, 免疫電 子顕微鏡を用いた Rixl 前駆体の解析は, Real のリング領 域が 60S 前駆体の 5S rRNA 領域に結合するのに対し、テ イル領域は Rsa4 の結合領域の近傍と相互作用する可能性 を示している⁴⁾. さらに,精製した Rix1 前駆体と ATP を 反応させると、60S 前駆体から Real と Rsa4 の乖離が誘導 されることから、Real によって、Rsa4 の乖離を伴う 60S 前駆体の大きな構造変換が引き起こされるモデル (Real による 60S 前駆体の再編成)が提案されている⁴(図 1).

図1 出芽酵母のリボソームの生合成

核内の 60S 前駆体は,数種類の輸送因子 (Arx1, Bud20, Mex67/Mtr2, Npl3 など)と結合し,最終的には核外移行 シグナルを持つ輸送アダプタータンパク質 Nmd3 と結合す る¹¹(図 1). Nmd3 と結合した 60S 前駆体は Crm1/Ran 依存 的に細胞質へと輸送され,その後,最終的な成熟過程を経 て 60S サブユニットへと成熟する⁵¹(図 1).

3. 核内における 60S 前駆体の品質管理機構

前節で述べたように、リボソームの生合成は非常に複雑 であり、合成途中の誤りによって、さまざまな異常リボ ソームを産生する危険性をはらんでいる.そのため細胞 は、合成された異常なリボソームを検出し、分解する品質 管理機構を備えている.

2005年、Tollerveyらのグループは、核内の合成過程で 生じた異常なrRNAが、<u>TR</u>f4-<u>A</u>ir1/2-<u>M</u>tr4 polyadenylation complex(TRAMP 複合体)によって短いポリA 鎖を付加 され、それが目印となりエキソソームによって分解される ことを発表した⁶⁾. その翌年、彼らは 60S サブユニットの 生合成因子である Sda1 の温度感受性変異株(*sda1-2*)を 用いた解析で、異常 60S 前駆体の核外輸送が阻害され、 TRAMP 複合体とエキソソーム依存的に未成熟 rRNA が分 解されることを報告した⁷⁾. *sda1-2* の非許容温度下におけ るリボソームタンパク質 L11 の局在解析では、60S 前駆体 が初めに核質に蓄積し、その後、核小体内の No-body と 呼ばれる画分に集められるようすが観察されている⁷⁾. さ らに、No-body には TRAMP 複合体とエキソソームも濃縮 されていることが観察されていることから, 60S 前駆体が No-body に集められ分解されている可能性が示唆されてい る⁷⁾. しかし, 異常なリボソーム前駆体の識別機構は不明 のままであった.

4. 細胞質における 40S 前駆体の品質管理機構

2011 年に Karbstein らは、核から輸送された 40S 前駆体 には60Sサブユニットとの会合面に七つの生合成因子 (Ltvl, Rio2, Tsrl, Diml, Enpl, Nobl, Pnol) が安定に 結合しており、これらが協調して働くことで、mRNA と の結合や 60S サブユニットとの会合を阻害しているモデ ルを提案した⁸⁾. さらに, その翌年の 2012 年に Karbstein と Tollervey らは、細胞質にて、40S 前駆体と成熟 60S サ ブユニットが結合する翻訳様の会合を報告した^{9.10}.核か ら輸送された 40S 前駆体は未成熟な 20S rRNA も含んでお り、成熟するためには 20S rRNA のプロセシングと、先に 述べた生合成因子の除去を完了させる必要がある、二つの グループは、核から輸送された 40S 前駆体と成熟 60S サ ブユニットが会合することによって、20SrRNAのプロセ シングと生合成因子の除去が行われ、それと同時に40S 前駆体の品質管理が行われるモデルを提唱した(図2). 細胞質の 40S 前駆体の成熟化には上述した七つの生合成 因子以外にもいくつか必要な生合成因子が存在する. これ らの因子は安定に 40S 前駆体に結合していないことから, 七つの生合成因子の乖離に必要である可能性が考えられ た. また, これまでに生合成因子の乖離には ATPase が関

図2 40S 前駆体と 60S サブユニットの会合による 40S 前駆体の品質管理 ① eIF5B の GTPase 活性に依存して成熟 60S サブユニットと 40S 前駆体が会合する. ② ATPase Fap7 によって生合成因子が除去される. ③ Nob1 による 20S rRNA のプロセシング が引き起こされる. *ITS1 (Internal Transcribed Spacers)

与している例が多く報告されていたことから. Karbstein らは ATPase である Fap2 の枯渇条件下においてポリソー ム解析を行った.すると予想に反して、80Sリボソームの 蓄積が観察され, 蓄積された 80S リボソームの中には成熟 60S サブユニットに加えて、40S 前駆体の構成因子(Tsrl, Dim1, Enpl, Nob1, Pno1と20S rRNA)が大量に含まれ ていた⁹. また, この 80S リボソームには開始 tRNA が含 まれていないことから、タンパク質合成能はないことも示 されている⁹. さらに,翻訳開始因子 eIF5B が 40S 前駆体 と成熟 60S サブユニットの会合を促進することも報告し ている⁹. 一方 Tollervey らは, Nobl による 20S rRNA の プロセシングが, eIF5BのGTPase 活性および eIF5Bと 25S rRNA の結合に依存していることを示した. さらに Nobl のアフィニティー精製によって得られた複合体に, 40S 前駆体に由来する 20S rRNA と成熟 60S サブユニット に由来する 25S rRNA が含まれていたことから、Karbstein らと同様に 40S 前駆体と成熟 60S サブユニットが会合す ることを示した¹⁰.以上の結果から, eIF5BのGTPase 活 性に依存した 40S 前駆体と 60S サブユニットの会合に よって 40S 前駆体の品質がチェックされること、さらに 品質が確認できた場合は、Fab7の ATPase 活性に依存して 生合成因子が乖離し、その結果 Nobl による 20S rRNA の プロセシングが引き起こされるモデルが提案されている (図2).

5. 核外輸送に共役した 608 前駆体の品質管理機構

先に述べたように, 60S 前駆体は輸送アダプター因子で ある Nmd3 と結合することによって核外移行能を獲得する わけだが,核内で生じた異常な 60S 前駆体は,細胞質へ 輸送されることなく分解される.このことから,Nmd3 は 正常に成熟した 60S 前駆体を識別して結合することが予 想されていたが,長い間その識別機構は謎に包まれてい た.

我々はこれまでに、60S前駆体の核外輸送だけでなく、

その直前に起こる Real による 60S 前駆体の再編成機構に ついて詳細な解析を行ってきた、その解析の過程で、核外 移行能を獲得する直前の 60S 前駆体である Rix1 前駆体に は、Real と Rsa4 に加えて、GTPase である Nug2 が非常に 多く含まれており, さらに Nug2 は核にのみ局在している ことを見いだしていた¹¹⁾. そこで, Nug2 が 60S 前駆体の 核外移行能の獲得に関与している可能性を調べることにし た.まず、RNA とタンパク質の結合領域を決定する CRAC (cross-linking and analysis of cDNA) 法を用いて rRNA上 における Nug2 と Nmd3 の詳細な結合領域を同定し, 60S 前駆体上における Nug2 と Nmd3 の結合領域が重複してい ることを見いだした.この結果は、Nug2とNmd3が同時 に 60S 前駆体に結合できないことを示しており,免疫沈 降法を用いた複合体解析からもこの結果をサポートする結 果が得られた.つまり、Nug2はNmd3のプレースホル ダーとして機能しうる可能性が考えられた. そこで我々 は、① Nug2 はどのようにして 60S 前駆体から乖離するの か、② Nug2 と 60S 前駆体の結合が Nmd3 の結合を阻止す るのか, ③ Nug2 の欠損が Nmd3 と未成熟な 60S 前駆体の 結合を誘発させるのかという三つの疑問を明らかにするた めに、さらなる解析を進めた.初めに、2種類のNug2優 性阻害変異株を作製し、ポリソーム解析とリボソームタン パク質 RpL25-eGFP の局在解析を行った.すると、これら 二つの変異体は 60S 前駆体との結合は保持するが、60S の 生合成および核外輸送を阻害することが確認された.ま た,酵素学的解析によって,Nug2のGTPase 活性が K⁺に よって促進されること、そして二つの変異体のうち一方は GTP との結合能を失った変異体であるのに対し、他方は GTP との結合能は保っているが GTPase 活性を失った変異 体であることを確認した.我々は以前,Rsa4とReal が緩 衝液中の ATP に依存して 60S 前駆体から乖離することを in vitro の解析によって報告した⁴⁾. この条件下では Nug2 の乖離は観察できなかったが、緩衝液中に ATP だけでな く K⁺を添加することで, Nug2 が 60S 前駆体から乖離する ことを見いだした¹¹⁾. さらに, 2種類の Nug2 変異体でも

図3 Real による再編成および核外輸送に共役した 60S 前駆体の品質管理機構

① AAA-ATPase Real による 60S 前駆体の再編成に伴う構造変換が引き起こされる. ② Nug2 が再編成による構造変換を感知し, 自身の GTPase 活性が上昇する. ③ GDP 型へ変換された Nug2 が 60S 前駆体から乖離することで Nmd3 の結合領域が露出し, Nmd3 が結合する. ④ Nmd3 の核外移行シグナルを Crm1/RanGTP が認識し,核外へと輸送される.

解析を行った結果,GTP 結合能が欠損した Nug2 変異体で は Rsa4, Real, Nug2 のすべての乖離が阻害され, GTPase 活性のみが欠損した Nug2 変異体では Nug2 の乖離だけが 阻害されることが明らかになった¹¹⁾.以上の結果は, Real による 60S 前駆体の再編成を誘導するには Nug2の GTP 結合能が、そして Nug2 の乖離には K⁺依存性の GTPase 活 性および ATP に依存した Real の再編成活性が必要である ことを示している.また、上記した2種類のNug2変異体 が Nmd3 と 60S 前駆体の結合を阻害すること、さらには Nug2の枯渇が Nmd3 と未成熟な 60S 前駆体の結合を誘発 させることも in vivo 解析によって明らかにした¹¹⁾.以上 の結果から、Nug2がNmd3のプレースホルダーとして働 き、未成熟な 60S 前駆体に誤って Nmd3 が取り込まれる ことを阻止すること、さらに Nug2の乖離が Real による 60S 前駆体の再編成. およびそれに伴う Nug2の GTPase 活性に依存していることを明らかにした(図3).

6. おわりに

リボソームタンパク質やリボソームの生合成に関与する 生合成因子の遺伝子変異が、さまざまな遺伝病やがん感受 性を上昇させる原因になっていることや、リボソームの生 合成異常によってがん抑制遺伝子である p53 の安定化、お よびアポトーシスの誘導が観察されていることから、現 在、がん治療における創薬のターゲットとしてリボソーム の生合成研究が世界中で注目されている¹²⁾.現在までにリ ボソームの生合成をターゲットとした創薬研究で、CX-3543 や CX-5461 といった化合物ががん細胞特異的に RNA ポリメラーゼ I を阻害し、p53 の安定化を介したアポトー シスを引き起こすことが報告されている^{13~15)}.いずれの化 合物もすでに臨床試験に入っており、がん治療への応用が 期待されている.

謝辞

本稿で紹介した"核外輸送に共役した 60S 前駆体の品

質管理機構"の研究はドイツハイデルベルク大学生化学センターの Ed Hurt 教授のもとで行ったものです. 関係者の皆様に感謝致します.

- Thomson, E., Ferreira-Cerca, S., & Hurt, E. (2013) J. Cell Sci., 126, 4815–4821.
- Miller, O. L., Jr. & Beatty, B.R. (1969) Science, 164, 955– 957.
- 3) Kos, M. & Tollervey, D. (2010) Mol. Cell, 37, 809-820.
- Ulbrich, C.,Diepholz, M., Bassler, J., Kressler, D., Pertschy, B., Galani, K., Böttcher, B., & Hurt, E. (2009) *Cell*, 138, 911– 922.
- Lo, K. Y.,Li, Z., Bussiere, C., Bresson, S., Marcotte, E.M., & Johnson, A.W. (2010) Mol. Cell, 39, 196–208.
- LaCava, J., Houseley, J., Saveanu, C., Petfalski, E., Thompson, E., Jacquier, A., & Tollervey, D. (2005) Cell, 121, 713–724.
- Dez, C., Houseley, J., & Tollervey, D. (2006) *EMBO J.*, 25, 1534–1546.
- Strunk, B.S., Loucks, C.R., Su, M., Vashisth, H., Cheng, S., Schilling, J., Brooks, C.L. 3rd, Karbstein. K., & Skiniotis, G. (2011) Science, 333, 1449–1453.
- Strunk, B.S., Novak, M.N., Young, C.L., & Karbstein, K. (2012) Cell, 150, 111–121.
- 10) Lebaron, S., Schneider, C., van Nues, R.W., Swiatkowskam, A., Walsh, D., Böttcher, B., Granneman, S., Watkins, N.J., & Tollervey, D. (2012) *Nat. Struct. Mol. Biol.*, 19, 744–753.
- 11) Matsuo, Y., Granneman, S., Thoms, M., Manikas, R.G., Tollervey, D., & Hurt, E. (2014) *Nature*, 505, 112–116.
- 12) Golomb, L., Volarevic, S., & Oren, M. (2014) FEBS Lett., 588, 2571–2579.
- 13) Bywater, M.J., Poortinga, G., Sanij, E., Hein, N., Peck, A., Cullinane, C., Wall, M., Cluse, L., Drygin, D., Anderes, K., Huser, N., Proffitt, C., Bliesath, J., Haddach, M., Schwaebe, M. K., Ryckman, D.M., Rice, W.G., Schmitt, C., Lowe, S.W., Johnstone, R.W., Pearson, R.B., McArthur, G.A., & Hannan, R.D. (2012) *Cancer Cell*, 22, 51–65.
- 14) Drygin, D., Lin, A., Bliesath, J., Ho, C.B., O'Brien, S.E., Proffitt, C., Omori, M., Haddach, M., Schwaebe, M.K., Siddiqui-Jain, A., Streiner, N., Quin, J.E., Sanij, E., Bywater, M.J., Hannan, R.D., Ryckman, D., Anderes, K., & Rice, W.G. (2011) *Cancer Res.*, 71, 1418–1430.
- 15) Drygin, D., Siddiqui-Jain, A., O'Brien, S., Schwaebe, M., Lin, A., Bliesath, J., Ho, C.B., Proffitt, C., Trent, K., Whitten, J.P., Lim, J.K., Von Hoff, D., Anderes, K., Rice, W.G. (2009) Cancer Res., 69, 7653–7661.

著者寸描

●松尾芳隆(まつお よしたか)
東北大学大学院薬学研究科助教.理学博士.
■略歴 2006 年奈良先端科学技術大学院大学情報科学研究科
修了(理学博士),同年同ポスドク研究員,08 年 Heidelberg 大学 Biochemi-Zentrum (BZH) ポスドク研究員,13 年より東北大学大学院薬学研究科助教.
■研究テーマと抱負 リボソームの生合成および核外輸送の分

子機構の解明.