大腸菌における膜内在性タンパク質の膜挿入機構

西山賢一

大腸菌におけるタンパク質膜挿入機構は, 膜挿入に関与する因子の変異株解析や, 膜挿 入反応の *in vitro* 実験系・再構成系の発展により多くの知見が明らかになってきている が, 個々の膜タンパク質により因子の要求性が大きく異なるため, 統一的な膜挿入機構の 理解には至っていなかった. また, リポソームでは *in vivo* では観察されない自発的な膜 挿入が起こるため, 再構成系の確立が困難であった. 筆者らは, ジアシルグリセロールに より自発的膜挿入が抑制されることを見出し, さらに膜挿入に関与する因子を発見・精製 した. その結果, 精製因子のみによる *in vivo* での依存性を正しく反映した膜挿入反応の 再構成系の構築に成功した. 本総説では, 膜挿入機構の分子機構について概説し, 機能的 膜タンパク質の *in vitro* 大量合成への応用の可能性についても議論する.

はじめに

膜内在性タンパク質は、大腸菌においては1,000種ほど の存在が予測されており、大腸菌ゲノムにコードされてい ると考えられる全タンパク質の約1/4近くにも及ぶ¹¹.こ れらの中には、その機能がまったく不明なものも多くあ る.ポストゲノムにおけるプロテオミクス解析において も、膜タンパク質の機能解析は重要な課題である.膜タン パク質は、当然のことながら、膜に正しく挿入されてから その機能が発現する.したがって、膜タンパク質が膜挿入 する分子機構の解明は、細胞生物学的に最も重要な課題の ひとつであるだけでなく、機能未知の膜タンパク質の機能 解析といった見地からも解明が望まれている課題である.

分泌タンパク質の膜透過機構が詳細に明らかになってき ているのに対し, 膜タンパク質の膜挿入機構については不 明な点が多く, 統一的な理解には至っていない. 個々の膜 タンパク質で膜挿入に必要な因子が異なる場合があるため である.現在考えられる大腸菌における膜タンパク質の膜 挿入機構について,最近の筆者らの成果を交えて概説する.

M13 プロコートタンパク質(M13 procoat)と 自発的膜挿入

M13ファージの主要コートタンパク質は、50アミノ酸 からなる膜内在性タンパク質であり、シグナルペプチドを 付加した前駆体として合成されたのち内膜に挿入される. M13 procoatの膜挿入機構の解析の歴史は古く, 1970年代 からはじまっている. M13 procoat は膜貫通領域を1箇所 もち、シグナルペプチドが切断された後、N 末端がペリプ ラズム側,C末端が細胞質側に露出する膜内配向性をと $る^{2,3}$ (図 1). M13 procoat はプロセスされるシグナルペプ チドを保持しているという点では分泌タンパク質に似てい るが、分泌タンパク質の膜透過に必要な因子 (Sec 因子, 後述)の変異株(sec 変異株) においてもその膜挿入はまっ たく影響を受けない4. そればかりか, リン脂質のみで形 成されたリポソーム存在下で M13 procoat を合成しても、 リポソームへの膜挿入が観察される5~7). さらに、リポ ソームにプロテアーゼをあらかじめ封入しておくと、膜挿 入した M13 procoat がリポソーム内部のプロテアーゼで分 解される"ことからも、M13 procoat がリポソームに膜挿入 していることが確認される.大腸菌が形成している膜電位 を破壊すると M13 procoat の膜挿入は強く阻害を受ける^{®)}

東京大学分子細胞生物学研究所(〒113-0032 東京都文 京区弥生 1-1-1)

Molecular mechanisms underlying membrane protein integrations in *E. coli*

Ken-ichi Nishiyama (Institute of Molecular and Cellular Biosciences, the University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan)

図に示す大腸菌内膜タンパク質の内膜での配向性モデルを示した.内膜の下が細胞質,上がペリプラズムを示している.上段下側の矢印は, in vitro で膜挿入反応を行った後プロテアーゼ消化を行ったとき,分解を受ける部位を示す. 点線矢印は,リーダーペプチダーゼ(Lep)により切断される部位を示す.

が、膜電位非存在下でも膜挿入が完全に阻害されるわけで はなく⁹, 膜電位を形成していないリポソームにも膜挿入 が起こる". このため, M13 procoatの膜挿入は自発的に進 行し、これは膜電位により促進されると考えられてきた. しかし、変異型 M13 procoat の中には、膜電位非存在下で も膜挿入できるものもある10,11)ため、膜電位は膜挿入のエ ネルギー源として作用するわけではない、膜挿入の駆動力 になっているのは、むしろ、疎水的相互作用である11,12). 膜電位は、膜タンパク質が一定のトポロジーで膜挿入する のに必要であるという報告もある^{11,13)}. M13 procoat はタン パク質性の「膜挿入装置」を介さずに、膜貫通領域の疎水 的相互作用のみによって自発的に膜挿入すると考えられた のである. 言うまでもなく M13 procoat はバクテリオ ファージ由来の膜タンパク質であるため、この自発的膜挿 入はファージがもつ巧妙なトリックによるとも考えられる が、F₀c サブユニットや DgkA, KdpD など (図1参照), 大腸菌自身がもっている膜タンパク質でもこうした機構で 膜挿入するものが知られている^{14~16)}.しかし,後述するよ うに,Sec 非依存的に膜挿入することは必ずしも自発的に 膜挿入することを意味しない.

2. YidC の発見

YidCは、ミトコンドリアやクロロプラストにおいて膜 挿入に関与する因子(それぞれ Oxalp と Alb3)と相同的 な因子であり¹⁷⁾、タンパク質膜透過装置 SecYEG と相互作 用する¹⁸⁾ことが知られている膜タンパク質である.yidC 遺伝子は生育に必須であり、YidC を枯渇させた株では、 様々な膜タンパク質の膜挿入が阻害される¹⁹⁾.このとき、 M13 procoat のシグナル配列のプロセッシングも影響を受

け、従来、自発的に膜挿入すると考えられてきた M13 procoat も YidC により膜挿入する可能性が考えられた. YidC 枯渇により、CvoA²⁰⁾などの呼吸系を構成する膜タン パク質の膜挿入が強く影響を受けるため、この株ではプロ トン駆動力(膜電位)の形成能が著しく低下していること が明らかになった. そのため, YidC 枯渇による M13 procoatの膜挿入阻害はプロトン駆動力形成能の低下による二 次的なものである可能性も指摘されたが、プロトン駆動力 に依存しない変異型 M13 procoat(上述)の膜挿入も影響 を受けたため、YidC が M13 procoat の膜挿入に関与する 可能性が強くなった²¹⁾.しかし, YidC 枯渇株で M13 procoatのプロセッシングは影響を受けるが、このとき M13 procoat はアルカリ抽出されないため、YidC 非存在下でも M13 procoat は、不完全ながらも膜挿入が最終過程まで進 行している可能性が高い²¹⁾.したがって、自発的膜挿入機 構は完全に否定されたわけではない. また, 膜タンパク質 の種類によっては、YidC 枯渇によってもあまり影響を受 けないものもあり^{9,22~24)}, YidC がすべての膜挿入反応に直 接的に関与するかどうかは完全に証明されたわけではな 12.

yidC 遺伝子は生育に必須である¹⁹⁾ため,YidC 枯渇によ る二次的な影響を排除することが非常に困難になる.その ため,in vitro 実験系や再構成系でもYidC の機能が調べら れている.FtsQ^{25,26)}や MtlA²⁷⁾(図1参照)のリボソーム-膜タンパク質新生鎖複合体を膜小胞と反応させると,膜挿 入中間体が形成できる.このとき,膜タンパク質新生鎖は YidC と効率よく化学架橋を形成でき,膜挿入中に膜タン パク質がYidC と相互作用することを強く示唆している. これらの結果より,膜タンパク質が膜挿入直後に脂質二重 層に放出される過程に YidC が関与する可能性や, YidC 上で膜挿入直後の膜タンパク質が高次構造を形成していく という可能性が提唱された²⁷⁾. さらには, M13 procoat と 同様に Sec 非依存的に膜挿入する Pf3 コートタンパク質 (図1参照) については、ある条件で YidC をプロテオリ ポソームに再構成しておけば、その膜挿入が促進され る²⁸⁾. このことから, YidCは「membrane insertase」であ ると提唱されている、以上のように、in vitro の化学架橋 実験でも、YidCの膜挿入反応への関与は強く支持されて いるが、実際に YidC を枯渇させた膜小胞を用いて膜挿入 活性が阻害されたことを示す結果はほとんど報告されてい ない. Fac サブユニットの YidC 枯渇膜への膜挿入が阻害 されるという報告があるが、FtsQの膜挿入はほとんど影 響を受けない²⁹⁾. YidCの膜挿入への関与については、む しろ否定的な報告もある. FtsQ は SecYEG を再構成した プロテオリポソームに膜挿入するが、このとき YidC を共 存させると阻害的に作用する²²⁾. さらに,LacY²³⁾(図1参 照)や MtlA[®]の膜挿入は YidC 枯渇膜でも野生株から調製 した膜と同様の活性で膜挿入する.しかし、YidC 枯渇膜 に膜挿入した LacY は機能的な高次構造を形成していない と考えられている²³.したがって、YidC は膜挿入過程で はなく、膜挿入直後における高次構造形成等に関与する可 能性が高い. すなわち, 膜内におけるシャペロン様の機能 をもつ可能性があると考えられる.

3. SRP (シグナル認識粒子) と Sec 因子の関与

シグナル認識粒子(SRP)は、分泌タンパク質のシグナ ル配列を認識し、小胞体膜へのターゲッティングに関与す る因子として真核細胞で同定された. 合成途中のシグナル ペプチドがリボソーム上に出現すると SRP が結合し,合 成が一時停止する.この新生鎖複合体は小胞体膜上の SRP 受容体 (SR) にターゲットされた後, 合成が再開さ れ, 膜透過が進行する. すなわち, SRP はタンパク質合 成に共役した分泌タンパク質の小胞体膜透過に重要な役割 を果たす³⁰⁾. SRP は6種のタンパク質と1種の RNA 分子 から構成される³⁰⁾. 中でも, 54 kDa サブユニットは, シグ ナル配列に直接結合し,GTPase 活性ももっていて、特に 重要な因子である.大腸菌では、RNAと54kDaサブユ ニットに相同的な因子, 4.5S RNA と Ffh (fifty four homolog) が存在する^{31~33)}. さらに, SR は SRαと SRβ から なる複合体であるが、大腸菌の FtsY は SRα と相同的な因 子である³⁴⁾. また, すべての細菌や古細菌にも Ffh, FtsY と 4.5S RNA のホモログが存在し, SRP の重要性を裏付け ている. fh 遺伝子は生育に必須であるが, Ffh を枯渇させ ても分泌タンパク質の膜透過はあまり影響を受けない³⁵⁾た め、大腸菌では Ffh は「SRP」として機能していないと考 えられる.大腸菌では、通常、分泌タンパク質の膜透過は タンパク質合成とは共役しないで進行する.したがって, タンパク質合成に共役した反応に関与する SRP は、合成 に共役しない反応には関与しないと考えられる.一方で, 膜内在性タンパク質は疎水性が非常に強いため、その膜挿 入は合成に共役する必要があるのではないかと考えられ, まず LacY の膜挿入が Ffh の枯渇や 4.5S RNA の変異によ り影響を受けることが明らかにされた³⁶⁾.その後、大腸菌 の SRP/SR 因子の枯渇や変異により多くの膜タンパク質の 膜挿入が影響を受けることが明らかとなった37~40).このこ とは、MtlA を用いた in vitro 実験系の確立により明確に示 された. MtlAは膜を6回貫通し、N末端とC末端領域は 細胞質側に露出している⁴¹⁾(図1参照). MtlA は膜挿入す ると、そのN末端領域(膜内在領域)は外部から作用さ せたプロテイナーゼ K (PK) 消化から保護される42~45). 膜 小胞およびタンパク質合成反応液から SRP/SR の構成因子 を除去すると膜挿入した保護断片はほとんど検出されなく なるが、除去した因子を添加すると膜挿入が回復する44. さらには、MtlA 新生鎖-リボソーム複合体は、Ffh と効率 よく化学架橋することができる²⁷⁾.この相互作用は,MtlA の膜貫通領域とFfhの間で観察される²⁷⁾. すなわち,Ffh は膜タンパク質の膜貫通領域を認識し、膜タンパク質の膜 へのターゲッティングに関与する.大腸菌 SRP は分泌タ ンパク質のシグナル配列は認識しない(この意味では SRP の名前は適当ではない)が、膜タンパク質の疎水的な領域 を認識し、膜への輸送に関わっている、シグナルペプチド にも疎水的な領域は存在するが, Ffh と相互作用するには 疎水性の強さが十分ではない.実際、シグナルペプチドの 疎水性を強くすると膜透過も SRP 依存となる.

SRP/SR の作用で膜にターゲットされた後、膜挿入がタ ンパク質合成に共役して進行する. Sec (secretion) 因子 は分泌タンパク質の膜透過に必須な因子であり、中でも膜 透過チャンネルを形成する SecYEG と ATPase 活性をもつ SecA が中心的な役割を果たす46. SecA は合成が完了した 分泌タンパク質前駆体に結合し、ATP を利用して膜透過 反応を駆動する. 真核生物の SRP は、分泌タンパク質の 膜透過にも膜タンパク質の膜挿入にも関与することが示さ れていた³⁰⁾ため、大腸菌においても Sec 因子は膜タンパク 質の膜挿入に関与する可能性が考えられたが, Sec 因子の 関与については不明な点が多かった.たとえば, secY 遺 伝子の変異により膜タンパク質の膜挿入が影響を受ける470 という報告がある一方, 膜挿入はほとんど影響を受けな い⁴⁸⁾という報告もあった.また,LacY や MtlA の膜挿入は secA 遺伝子の変異株でも効率よく起こる⁴³ことが示される 一方, FtsQ や Lep (リーダーペプチダーゼ)の膜挿入は SecA に強く依存する^{49,50}ことも判明した.

これらの Sec 依存性の有無についても, in vitro 実験系の進展により明らかになった. secY 遺伝子や secE 遺伝子

の変異株から反転膜小胞を調製して膜挿入反応を行うと, MtlA や FtsO の膜挿入は阻害を受け^{22,45)}, 膜透過チャンネ ル SecYEG は膜挿入にも重要であることが判明した.変異 株の解析で SecY の関与があいまいであった理由のひとつ は、secY 変異の中には分泌タンパク質の膜透過のみ、あ るいは膜挿入のみに欠陥が生じる場合があることである. SecA については、変異株の解析と同様、MtlA の膜挿入に は必要なく45, FtsQ には必須であった22. この依存性の相 違は膜タンパク質がペリプラズム側に大きな親水的な領域 をもつかどうかによると考えられている. 膜貫通領域の膜 挿入は合成に共役して進行するが、その膜挿入後に親水的 な領域が存在すれば、その領域の膜透過は分泌タンパク質 同様に SecA に依存する. このとき, SecYEG はリボソー ムとも SecA とも相互作用する⁵¹が,両者が SecYEG 上で 共存できるのか,ある程度合成が完了しリボソームが遊離 した後に SecA が相互作用するのかは不明である.また, MtlA の膜挿入には SecA は必要ないが、このとき SecG も 不要となる⁴⁵⁾一方, SecA を必要とする FtsQ の膜挿入には SecG が重要となる²²⁾. SecG は SecA の構造変化に応じて 構造変化し, SecA 機能を促進する^{52,53}ため, SecA 依存性 と SecG 依存性には強い相関関係が観察されている.以上 のように、Sec 因子依存で膜挿入する膜タンパク質は SecA を必要とするものとしないものに区別でき、それは ペリプラズムに親水的な領域が存在するかどうかによる. SecA 依存的になるのに必要なペリプラズム領域の長さは 30アミノ酸程度と考えられているが、膜タンパク質に よってはもっと短くても SecA 依存的になる^{50,54)}.

4. タンパク質膜挿入反応の再構成

膜挿入機構をさらに詳細に調べるためには、反応に関わ る因子のみを用いた再構成系が必要になってくる.筆者ら の報告を含めて膜挿入反応の再構成系がいくつか報告され ている. Driessenらは、FtsQ²²⁾やCyoA²⁴⁾の膜挿入がSec-YEG に依存することを示したが、FtsQ は YidC の添加に より膜挿入活性が低下し、CyoAの場合は促進されてい る. これらの膜タンパク質は SecYEG だけでなく SecA に も依存するため、膜貫通領域の膜挿入が正しく再構成され ていなくても、ペリプラズム領域が SecA 依存的に膜透過 すれば膜挿入活性として検出される可能性もある. Sec 非 依存的な膜挿入についても、Pf3 コートタンパク質²⁸⁾や Foc サブユニット²⁰⁾を基質とした再構成系が報告されている. これらは、YidCにより膜挿入が促進されるものの、YidC が存在しないときにも膜挿入活性が検出されている。それ に対して, MtlA や LacY など, SecYEG に依存するが SecA に依存しないタイプの再構成系は報告されていなかった. その大きな理由は、これらの膜タンパク質は SecYEG に依 存する反面、リン脂質からなるリポソームにも自発的膜挿

入するためである^{。)}.

4-1. ジアシルグリセロール (DAG) による自発的膜挿 入の抑制

上述のように M13 procoat はリポソームに自発的膜挿入 する. 同様の条件で MtlA を合成すると MtlA の膜挿入断 片が検出された(図2A).この膜挿入断片は合成に共役し てのみ観察され、尿素や高濃度の塩で洗浄しても安定に存 在するが、界面活性剤でリポソームを可溶化すると消失す る⁹. さらに, Ffh や FtsY の添加により膜挿入効率が上昇 した⁹. これらの結果は、MtlA はタンパク質性の因子を まったく含まないリポソームに自発的に膜挿入することを 示している.しかし、これは MtlA が SecYEG に依存して **膜挿入するという知見⁴⁹(上述)とは矛盾してしまう結果** である. SecEを枯渇させた膜小胞を可溶化し、界面活性 剤を除去してプロテオリポソームを再構成すると MtlA の 膜挿入はまったく観察されないが, SecYEG を大量生産し た株から反転膜小胞を可溶化・再構成すると MtlA の膜挿 入は著しく促進された[®]. この結果により, 膜小胞には本 来自発的膜挿入を抑制する仕組みが存在し、リン脂質のみ から形成されたリポソームではこの仕組みが破壊されてい る可能性が考えられた. すなわち, 膜小胞には自発的膜挿 入を抑制する働きがある膜構成成分が存在するが、リポ ソームにはこの成分が含まれていないという可能性であ る. 膜成分を検索した結果、ジアシルグリセロール (DAG) に自発的膜挿入を抑制する作用があることが明ら かとなった⁹(図2A).リン脂質にDAGを混合してリポ ソームを形成すると、DAGの濃度が上昇するにつれて MtlAの自発的膜挿入は低下し、DAGが3%以上存在する ときは、SRP/SR を加えても MtlA の膜挿入は全く観察さ れなくなった.DAGによる自発的膜挿入の抑制は,M13 procoat を基質に用いても観察された⁹(図 2B). これらの 結果は、膜タンパク質の疎水的な領域は、本来、DAG が 存在しないリポソームに自発的膜挿入する性質があること を強く示唆している.したがって、これまで報告されてい る再構成系^{22,24,28,29)}では,DAGを含まないリポソームを用 いて再構成しているため、膜挿入反応が正しく再構成され ていない可能性が高い.大腸菌では DAG は全クロロホル ム/メタノール抽出物に対して1%前後発現していること が知られている55. したがって, 全リン脂質に対しては, DAGは2%前後存在することになる.これは、自発的膜 挿入の抑制に必要な DAG 量とほぼ同じであるため、大腸 菌における DAG の主要な機能は自発的膜挿入の抑制であ ると考えている.リン脂質のみで形成されたリポソームで は、リン脂質の親水的な頭部が比較的大きいため、二重層 内部の疎水的な領域で空間が生じていてこの空間を疎水的 な物質で充填することにより安定な構造を取る可能性があ

図2 ジアシルグリセロール (DAG) による自発的膜挿入の抑制 図に示す膜小胞存在下で MtlA(A)あるいは M13 procoat の H5 変異体(B)をラベル・合成した. MtlA の場合は,図に示す通り SRP/SR を加えた.合成終了後,プロテイナーゼ K(PK)消化を 行い,膜挿入断片 (membrane protected fragment; MPF) を解析し,膜挿入効率を求めた. M13 procoat の H5 変異体は,シグナルペプチド切断部位付近に変異が導入されていて,シグナルが 切断されなくなっている³. H5 変異体は野生型と同じ効率で膜挿入する⁶¹. *は M13 procoat の膜挿入断片を示す.

り,これが自発的膜挿入の駆動力になっていると考えられる.

4-2. 膜挿入に関与する新因子

DAGを含むリポソームを用いて SecYEG や YidC を再 構成したプロテオリポソームを調製し, MtlA が膜挿入す るかどうか調べた.しかし,SRP/SR存在下でも SecYEG/ YidC を再構成したプロテオリポソームへの MtlA の膜挿 入はまったく検出できなかった⁹. このことは膜挿入反応 に関わる未知の因子が存在することを強く示唆している. そのため、大腸菌内膜を分画し、膜挿入に関わる因子を検 索した.尿素洗浄した内膜画分をコール酸で抽出したとこ ろ, Sec 因子や YidC を含まない画分を得た. コール酸抽 出画分に SecYEG を加えてプロテオリポソームを再構成し たところ, MtlAの膜挿入活性が検出された⁹. YidC をさ らに加えて再構成しても MtlA の膜挿入活性には変化はな かった⁹. さらに、コール酸抽出画分のみを再構成したプ ロテオリポソームには MtlA は膜挿入しなかったが、M13 procoatの膜挿入が観察された.これらのことから、コー ル酸抽出画分には膜挿入反応に関与する新因子が存在する

ことが判明した. さらに, YidC は MtlA や M13 procoat の 膜挿入には必要ないことも明らかになった. この因子を, 膜挿入活性を指標として精製したところ, SDS-PAGE 上で 約 8kDa の膜成分が得られた(図 5 参照). DAG により自 発的膜挿入を抑制した条件で、この因子のみに依存して M13 procoat の膜挿入が観察された(図5参照). MtlAの 膜挿入は、この因子と SecYEG が存在するとき観察され、 SRP/SR により促進された(図3). さらに、モデル膜タン パク質 Momp2(図1参照)の膜挿入もこの因子に依存し て観察された(図4). Momp2は MtlA の最初の膜貫通領 域に外膜タンパク質(分泌タンパク質) OmpA の成熟体領 域を融合したタンパク質であり、膜挿入には SRP/SR と SecYEG, SecA が必要である⁵⁶. 再構成に DAG を含まな いリポソームを用いたとき, Momp2の膜挿入は SecYEG, SecA,新因子に依存したが、SRP/SRには依存しなかっ た⁹ (図 4). これは, Momp2の膜貫通領域が自発的膜挿 入したことを示している.一方,DAGを含むプロテオリ ポソームでは, Momp2 は SecYEG, SecA, 新因子, SRP/ SR のすべてに依存して膜挿入した⁹(図 4). これらの結 果は、プロテオリポソームに DAG と膜挿入に関与する新

図3 MtlA 膜挿入の再構成

図に示すように因子や SecYEG を含むプロテオリポソームを再構成し,図に示す膜小胞存在下で MtlA をラベル・合成した.また,図に示すように SRP/SR を MtlA 合成時に加えた.図2同様に膜挿入活性を解析した.

図4 Momp2の膜挿入の再構成

図に示すように因子や SecYEG を含むプロテオリポソームを再構成し,図に示す膜小胞存在下で Momp2 をラベル・合成した.また,図に示すように SRP/SR や SecA を Momp2 合成時に加えた.図2 同様に膜挿入活性を解析した.

因子が存在すると、MtlA や Momp2の膜挿入について、 これまで明らかになっているすべての因子依存性が正しく 再構成されたことを示している.また、新因子が存在すれ ば M13 procoat の膜挿入も観察されることから、新因子は 膜タンパク質の「integrase 活性」をもっていると考えられ る.OmpA などの分泌タンパク質は SecA と SecYEG によ り膜透過する⁴⁶⁾が、SecYEG にこの新因子を加えて再構成 すると膜透過活性は著しく促進されることも判明した⁶⁹. 新因子が「integrase」であるとすると、シグナルペプチド の膜挿入過程に新因子が作用して膜透過活性を促進してい ると考えられる.さらに、新因子が SecYEG と直接相互作 用する可能性も強く示唆される.

新因子をプロテイナーゼK消化すると,SDS-PAGE上 で約8kDaから約7kDaに変化し, 膜挿入活性も消失し た⁹⁾.このことから,新因子はタンパク質性の因子である と考えられるが,分子の大部分が糖質・脂質であることも 明らかとなった.新因子を酸処理やアルカリ処理すると, それぞれ糖質部分や脂質部分が分解され,それと同時に膜 挿入活性も消失した⁹⁾.これらのことから,新因子を構成 するペプチド,糖質,脂質部分はすべてタンパク質膜挿入 活性に必須であることが明らかになった.大腸菌外膜主要 成分であるリポ多糖(LPS)にはペプチド部分は存在しな

図5 変異型因子の活性と M13 procoat の膜挿入の再構成 野生株 (MC4100) あるいは LPS の変異株 (D31m4) から因子を精製し, SDS-PAGE で解析した (左). これらの因子をプロテオリポソームに再構成し, M13 procoat の膜 挿入活性を図 2 と同様に解析した.

いが,新因子との構造的な類似点がいくつか挙げられる. そのため、LPS 変異体である deep rough 変異体から新因子 を精製した. deep rough 変異体では糖鎖部分が短くなった LPS を発現している⁵⁷⁾. この変異株から精製した因子は SDS-PAGE 上で約 4kDa であり,野生株由来の因子(約 8 kDa)より大幅に小さくなっていた⁹⁰(図 5). この変異型 因子は,野性株由来の因子に比べて半分以下の活性しか もっていなかった⁹⁰(図 5). さらに,この変異株では,外 膜主要リポタンパク質 Lpp の前駆体が蓄積していること が明らかになった⁹⁰. すなわち,この変異株では新因子の 生合成が影響を受け,その結果,分泌・膜挿入阻害が引き 起こされたと考えられる. これらのことから,新因子は LPS の脂質部分である Lipid A の誘導体であることが明ら かとなった. LPS 生合成と新因子の生合成は一部重複して いることが考えられる.

5. タンパク質膜挿入機構と今後の展望

大腸菌における膜タンパク質の膜挿入機構についてはい くつかの異なった経路が考えられるが,以上のことをまと めると,図6に示すような3種の機構が考えられる.1番 目の経路では,膜タンパク質の合成が進行し,膜貫通領域 がリボソームから露出してくるとSRPにより認識され, SR を介して膜にターゲットされる.その後,SecYEGと 新因子の作用で膜挿入する.このとき,新因子は膜挿入に 直接関与するのか,膜貫通領域がSecYEGの膜透過チャン ネルを経て脂質二重層に放出する過程に関与するのかは不 明であるが,SecYEGのみでは膜挿入活性が検出されな かったことや新因子が「integrase」活性をもつ可能性を考 えると,前者の可能性が高いと考えている.膜挿入途中の 膜タンパク質はYidCと相互作用し,最終的な高次構造を 形成すると考えられる.2番目の経路は,膜タンパク質が 親水的なペリプラズム領域をもつ場合である. 1 番目と同 様に SRP/SR により膜にターゲットされ, SecYEG と新因 子の作用で膜挿入した後は、SecA の作用でペリプラズム 領域が膜透過する.この場合も膜挿入中に YidC と相互作 用する.SecYEG上でリボソームとSecAが同時に機能し うるのか、リボソームが遊離した後 SecA が機能するのか は不明である.3番目の経路はSR/SRやSec因子に依存 しない経路である.この経路で膜挿入するタンパク質は、 従来,自発的に膜挿入すると考えられてきたが,DAG に より自発的膜挿入が抑制された条件(すなわち, in vivo により近い条件)では、これらの膜タンパク質も新因子に 依存して膜挿入することが明らかとなった。この場合も YidC は膜タンパク質と相互作用するが、膜挿入には必須 ではなく、膜挿入の完了や膜挿入後の高次構造形成に関与 すると考えられる。いずれの膜挿入機構においても分泌タ ンパク質のシグナルペプチドの膜挿入においても新因子の 機能が非常に重要であった.この因子は単なるタンパク質 ではなく、ペプチド、糖質、脂質からなる物質であり、脂 質二重層内部への入り口として機能していると考えられ る. 今後はこの因子の構造を決定して、構造と機能との相 関関係をより詳細に調べていく必要があると考えている.

リボソームをはじめとしてタンパク質合成に関わる因子 は細胞質に局在する.タンパク質合成に必要な因子は PURE System⁵⁸として精製・再構成できるが,SRPやSR, SecA を必要に応じて添加すれば尿素洗浄した膜小胞への タンパク質膜挿入反応が再現できることが明らかになって いる⁵⁹.このことは、細胞質画分中でこれらの因子以外膜 挿入反応には必要がないことを示している.したがって, 膜挿入に関わる因子を再構成したプロテオリポソームに PURE Systemを組み合わせることにより、大腸菌の抽出 物を全く含まない、精製因子のみを用いた,膜挿入反応の

図6 大腸菌における膜タンパク質の膜挿入の分子機構 現在筆者らが考えている,3種の膜タンパク質の膜挿入機構を示す.Sec 依 存の膜挿入経路(上,中)では,SRP/SRの働きで膜にターゲットされた後 はSecYEG/因子(F)上で膜挿入が進行する.膜挿入後はYidC上で高次構 造を形成すると考えている.膜タンパク質がペリプラズム側に親水的な領域 をもつ場合,膜透過反応に必須のATPaseであるSecAが必要となる(中). Sec 非依存の膜挿入経路(下)では,SRP/SR,SecYEG,SecA は必要ないが, 因子(F)は必須である.この場合も膜挿入後期段階でYidCが関与する可能 性がある.

完全再構成系が構築できると考えている.

界面活性剤存在下で膜タンパク質を in vitro 合成するこ とも可能であり、その成功例も報告されている⁶⁰.しか し、界面活性剤によりタンパク質合成が阻害されたり、そ れぞれの膜タンパク質に応じて界面活性剤の種類や濃度を 検討する必要もある.さらには、機能解析のためには合成 した膜タンパク質をプロテオリポソームに再構成する必要 がある.そのため、膜挿入機構が完全に明らかとなれば、 SecYEG、YidC や新因子等、膜タンパク質が膜挿入し機能 発現するのに必要な因子をあらかじめ再構成したプロテオ リポソームを用いることで、膜タンパク質の発現と同時に 膜挿入・高次構造の形成までも可能になる.近い将来、こ うした手法が機能未知の膜タンパク質の解析法として一般 的な手法となることを期待している.

文 献

 Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E.L. (2001) J. Mol. Biol., 305, 567–580.

- Wickner, W. (1976) Proc. Natl. Acad. Sci. USA, 73, 1159– 1163.
- Kuhn, A. & Wickner, W. (1985) J. Biol. Chem., 260, 15914– 15918.
- 4) Kuhn, A. (1995) FEMS Microbiol. Rev., 17, 185–190.
- Watts, C., Silver, P., & Wickner, W. (1981) Cell, 25, 347– 353.
- Ohno-Iwashita, Y. & Wickner, W. (1983) J. Biol. Chem., 258, 1895–1900.
- Geller, B. & Wickner, W. (1985) J. Biol. Chem., 260, 13281– 13285.
- Date, T., Zwizinski, C., Ludmerer, S., & Wickner, W. (1980) Proc. Natl. Acad. Sci. USA, 77, 827–831.
- Nishiyama, K., Ikegami, A., Moser, M., Schiltz, E., Tokuda, H., & Muller, M. (2006) J. Biol. Chem., 281, 35667–35676.
- Zimmermann, R., Watts, C., & Wickner, W. (1982) J. Biol. Chem., 257, 6529–6536.
- 11) Cao, G., Kuhn, A., & Dalbey, R.E. (1995) *EMBO J.*, 14, 866–875.
- 12) Kiefer, D. & Kuhn, A. (1999) EMBO J., 18, 6299-6306.
- 13) Kiefer, D., Hu, X., Dalbey, R., & Kuhn, A. (1997) EMBO J., 16, 2197–2204.
- 14) Yi, L., Celebi, N., Chen, M., & Dalbey, R.E. (2004) J. Biol. Chem., 279, 39260–39267.
- 15) Sanders, C.R. II, Czerski, L., Vinogradova, O., Badola, P.,

Song, D., & Smith, S.O. (1996) Biochemistry, 35, 8610-8618.

- 16) Facey, S.J. & Kuhn, A. (2003) Eur. J. Biochem., 270, 1724– 1734.
- 17) Kuhn, A., Stuart, R., Henry, R., & Dalbey, R.E. (2003) Trends Cell Biol., 13, 510–516.
- 18) Scotti, P.A., Urbanus, M.L., Brunner, J., de Gier, J.W., von Heijne, G., van der Does, C., Driessen, A.J., Oudega, B., & Luirink, J. (2000) *EMBO J.*, 19, 542–549.
- 19) Samuelson, J.C., Chen, M., Jiang, F., Moller, I., Wiedmann, M., Kuhn, A., Phillips, G.J., & Dalbey, R.E. (2000) *Nature*, 406, 637–641.
- 20) van der Laan, M., Urbanus, M.L., Ten Hagen-Jongman, C.M., Nouwen, N., Oudega, B., Harms, N., Driessen, A.J., & Luirink, J. (2003) Proc. Natl. Acad. Sci. USA, 100, 5801–5806.
- 21) Samuelson, J.C., Jiang, F., Yi, L., Chen, M., de Gier, J.W., Kuhn, A., & Dalbey, R.E. (2001) *J. Biol. Chem.*, 276, 34847– 34852.
- 22) van der Laan, M., Nouwen, N., & Driessen, A.J. (2004) J. Biol. Chem., 279, 1659–1664.
- 23) Nagamori, S., Smirnova, I.N., & Kaback, H.R. (2004) J. Cell Biol., 165, 53–62.
- 24) du Plessis, D.J., Nouwen, N., & Driessen, A.J. (2006) J. Biol. Chem., 281, 12248–12252.
- 25) Urbanus, M.L., Scotti, P.A., Froderberg, L., Saaf, A., de Gier, J.W., Brunner, J., Samuelson, J.C., Dalbey, R.E., Oudega, B., & Luirink, J. (2001) *EMBO Rep.*, 2, 524–529.
- 26) van der Laan, M., Houben, E.N., Nouwen, N., Luirink, J., & Driessen, A.J. (2001) EMBO Rep., 2, 519–523.
- 27) Beck, K., Eisner, G., Trescher, D., Dalbey, R.E., Brunner, J., & Muller, M. (2001) *EMBO Rep.*, 2, 709–714.
- 28) Serek, J., Bauer-Manz, G., Struhalla, G., van den Berg, L., Kiefer, D., Dalbey, R., & Kuhn, A. (2004) *EMBO J.*, 23, 294– 301.
- 29) van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N., & Driessen, A.J. (2004) J. Cell Biol., 165, 213–222.
- 30) Keenan, R.J., Freymann, D.M., Stroud, R.M., & Walter, P. (2001) Annu. Rev. Biochem., 70, 755–775.
- 31) Ribes, V., Romisch, K., Giner, A., Dobberstein, B., & Tollervey, D. (1990) Cell, 63, 591–600.
- 32) Bernstein, H.D., Poritz, M.A., Strub, K., Hoben, P.J., Brenner, S., & Walter, P. (1989) *Nature*, 340, 482–486.
- Romisch, K., Webb, J., Herz, J., Prehn, S., Frank, R., Vingron, M., & Dobberstein, B. (1989) *Nature*, 340, 478–482.
- 34) Luirink, J., ten Hagen-Jongman, C.M., van der Weijden, C.C., Oudega, B., High, S., Dobberstein, B., & Kusters, R. (1994) *EMBO J.*, 13, 2289–2296.
- 35) Phillips, G.J. & Silhavy, T.J. (1992) Nature, 359, 744-746.
- 36) Macfarlane, J. & Muller, M. (1995) Eur. J. Biochem., 233, 766–771.
- 37) de Gier, J.W., Mansournia, P., Valent, Q.A., Phillips, G.J., Luirink, J., & von Heijne, G. (1996) FEBS Lett., 399, 307-

309.

- 38) Ulbrandt, N.D., Newitt, J.A., & Bernstein, H.D. (1997) Cell, 88, 187–196.
- 39) Seluanov, A. & Bibi, E. (1997) J. Biol. Chem., 272, 2053– 2055.
- Valent, Q.A., Scotti, P.A., High, S., de Gier, J.W. L., von Heijne, G., Lentzen, G., Wintermeyer, G., Oudega, B., & Luirink, J. (1998) *EMBO J.*, 17, 2504–2512.
- 41) Sugiyama, J.E., Mahmoodian, S., & Jacobson, G.R. (1991) Proc. Natl. Acad. Sci. USA, 88, 9603–9607.
- 42) Stephan, M.M. & Jacobson, G.R. (1986) Biochemistry, 25, 8230–8234.
- 43) Werner, P.K., Saier, M.H., Jr., & Muller, M. (1992) J. Biol. Chem., 267, 24523–24532.
- 44) Koch, H.G., Hengelage, T., Neumann-Haefelin, C., MacFarlane, J., Hoffschulte, H.K., Schimz, K.L., Mechler, B., & Muller, M. (1999) *Mol. Biol. Cell*, 10, 2163–2173.
- 45) Koch, H.G. & Muller, M. (2000) J. Cell Biol., 150, 689-694.
- 46) Duong, F., Eichler, J., Price, A., Leonard, M.R., & Wickner, W. (1997) Cell, 91, 567–573.
- 47) Ito, K. & Akiyama, Y. (1991) Mol. Microbiol., 6, 2243-2253.
- 48) Yamato, I. (1992) J. Biochem., 111, 444-450.
- 49) Scotti, P.A., Valent, Q.A., Manting, E.H., Urbanus, M.L., Driessen, A.J., Oudega, B., & Luirink, J.F. (1999) *J. Biol. Chem.*, 274, 29883–29888.
- 50) Andersson, H. & von Heijne, G. (1993) *EMBO J.*, **12**, 683-691.
- 51) Prinz, A., Behrens, C., Rapoport, T.A., Hartmann, E., & Kalies, K.U. (2000) *EMBO J.*, **19**, 1900–1906.
- 52) Nishiyama, K., Suzuki, T., & Tokuda, H. (1996) *Cell*, 85, 71–81.
- 53) Suzuki, H., Nishiyama, K., & Tokuda, H. (1998) Mol. Microbiol., 29, 331–341.
- 54) Deitermann, S., Sprie, G.S., & Koch, H.G. (2005) J. Biol. Chem., 280, 39077–39085.
- 55) Rotering, H. & Raetz, C.R. (1983) J. Biol. Chem., 258, 8068– 8073.
- 56) Neumann-Haefelin, C., Schafer, U., Muller, M., & Koch, H.G. (2000) *EMBO J.*, **19**, 6419–6426.
- 57) Monner, D.A., Jonsson, S., & Boman, H.G. (1971) J. Bacteriol., 107, 420–432.
- 58) Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001) *Nat. Biotechnol.*, **19**, 751– 755.
- 59) Kuruma, Y., Nishiyama, K., Shimizu, Y., Muller, M., & Ueda, T. (2005) *Biotechnol. Prog.*, 21, 1243–1251.
- 60) Schwarz, D., Klammt, C., Koglin, A., Lohr, F., Schneider, B., Dotsch, V., & Bernhard, F. (2006) *Methods*, in press.
- 61) Soekarjo, M., Eisenhawer, M., Kuhn, A., & Vogel, H. (1996) *Biochemistry*, 35, 1232–1241.